Congo red, tube method and tissue culture plate method for detection of biofilm formation from canine teeth
Main Article Content
Abstract
A biofilm is a bacterial group that adheres to the canine tooth surface, known as plaque, which can cause canine gingivitis and periodontal disease. Contact with dogs or their saliva can transmit the biofilm to the dog's owner and other animals. This study aims to detect biofilm-producing bacteria and evaluate the suitability of three methods: Congo red agar (CRA), Tube method (TM), and Tissue culture plate (TCP) in a screening test for isolating biofilms from canine teeth. A total of 46 (38.98 %) isolated canine teeth showed positive biofilm production by TCP, which was considered the gold standard for biofilm detection. When compared to TCP, CRA detected 19 biofilm producers (16.10 %) and 99 non-biofilm producers (83.90 %), with sensitivity and specificity of 41 % and 100 %, respectively. TM correctly identified 32 biofilm producers (27.12 %) and 86 non-biofilm producers (72.88 %), with sensitivity and specificity of 69 % and 100 %, respectively. Compared to the TM and CRA approaches, the TM was superior to CRA in biofilm detection and demonstrated better sensitivity results. Among the three investigated phenotypic biofilm detection methods, TCP was the most focused, trustworthy, and simple method for identifying biofilms. It may be employed routinely as a standard screening technique for discovering bacteria that produce biofilms in an animal diagnostic laboratory.
Article Details
References
Bai, L., Takag, I. S., Ando, T., Yoneyama, H., Ito, K., Mizugai, H., & Isogai, E. (2016). Antimicrobial activity of tea catechin against canine oral bacteria and the functional mechanisms. The Journal of Veterinary Medical Science, 78(9), 1439 – 1445. doi: 10.1292/jvms.16-0198.
Charlotte, C. P., Anthony, A. Y., & Weese, J. S. (2013). Evaluation of biofilm production by Pseudomonas aeruginosa from canine ears and the impact of biofilm on antimicrobial susceptibility in vitro Veterinary Dermatology, 24(4), 446 – 449. doi: 10.1111/vde.12040.
Christensen, G. D., Simpsonv, W. A., Yonger, J. J., Baddor, L. M., Barrett, F. F., Melton, D. M., & Beachey, E. H. (1985). Adherence of coagulase-negative Staphylococci to plastic tissue culture plates: a quantitative model for the adherence of Staphylococci to medical devices. Journal of Clinical Microbiology, 22, 996 – 1006. doi: 10.1128/jcm.22.6.996-1006.1985.
Dhanalakshmi, T. A., Venkatesha, D., Nusrath, A., & Asharani, N. (2018). Evaluation of phenotypic methods for detection of biofilm formation in uropathogens. National Journal of Laboratory Medicine., 7(4), MO06 – MO11. doi: 10.7860/NJLM/2018/35952:2321.
Dogan, B., Antinheimo, J., Cetiner, D., Bodur, A., Emingil, G., Buduneli, E., Uygur, C., Firatli, E., Lakio, L., & Asikainen, S. (2003). Subgingival microflora in Turkish patients with periodontitis. Journal of Periodontology, 74, 803 – 814. doi: 10.1902/jop.2003.74.6.803.
Elizabeth, A. S., Lynetta, J. F., Mohamed, N. S., & Paul, W. S. (2014). Biofilm-infected wounds in a dog. Journal of The American Veterinary Medical Association, 244(6), 699 – 707. doi:10.2460/javma.244.6.699.
Freeman D. J., Falkiner F. R., & Keane C. T. (1989). New method for detecting slime production by coagulase negative staphylococci. Journal of Clinical Pathology, 42(8), 872 – 874. doi: 10.1136/jcp.42.8.872.
Goldstein, E. J., Citron, D. M., Wield, B., Blachman, U., Sutter, V. L, Miller, T. A,. & Finegold, S. M. (1978). Bacteriology of human and animal bite wounds. Journal of Clinical Microbiology, 8(6): 667 – 672. doi: 10.1128/jcm.8.6.667-672.1978.
Han, J. I., Yang, C. H., & Park, H. M., (2015). Emergence of biofilm-producing Staphylococcus pseudintermedius isolated from healthy dogs in South Korea. Veterinary Quarterly, 35(4), 207 – 210.
Hassan A., Usman J., Kaleem F., Omair M., Khalid A., & Iqbal M. (2011). Detection and antibiotic susceptibility pattern of biofilm producing Gram positive and Gram negative bacteria isolated from a tertiary care hospital of Pakistan. Malaysian Journal of Microbiology, 7(1), 57-60. doi:10.21161/mjm.25410.
Habibzadeh F., Parham, H.& Mahboobeh, Y. (2022). The apparent prevalence, the true prevalence. Biochem Medica, 32(2), 020101. doi: 10.11613/BM.2022.020101.
Imbronito, A.V., Okuda, O.S., Maria de Freitas, N., Moreira Lotufo, R.F., & Nunes, F.D. (2008). Detection of herpesviruses and periodontal pathogens in subgingival plaque of patients with chronic periodontitis, generalized aggressive periodontitis, or gingivitis. Journal of Periodontology, 79(12), 2313-21. doi: 10.1902/jop.2008.070388.
Lamont, R. J., Hajishengallis, G. N., Koo, H. M., & Jenkinson, F. (2019). Oral microbiology and immunology. (3rd ed.). John Wiley & Sons, Inc., New York, USA.
Lasserre J. F., Brecx M. C., & Toma S. (2018). Oral microbes, biofilms and their role in periodontal and peri-implant diseases. Materials, 11(10), 1802. doi: 10.3390/ma11101802.
Meyers, B., Schoeman, J. P., Goddard, A., & Picard, J. (2008). The bacteriology and antimicrobial of infected and non-infected dog bite wounds: fifty cases. Veterinary Microbiology, 127 (3 – 4): 360 – 368. doi: 10.1016/j.vetmic.2007.09.004.
Mohamed A., Rajaa A. M., Khalid Z., Fouad M., & Naima R. (2016). Comparison of Three Methods for the Detection of Biofilm Formation by Clinical Isolated of staphylococcus aureus Isolated in Casablanca. International Journal of Science and Research, 5(10), 1156 – 1159. doi: 10.21275/ART20162319.
Offenbacher, S. (1996). Periodontal diseases: pathogenesis. Ann Periodontal, 1, 821 – 887. Dental Research Center, University of North Carolina, Chapel Hill, USA.
Oliveira, A., & Cunha, M. (2010). Comparison of methods for the detection of biofilm production in coagulase-negative staphylococci. BMC Research Notes, 3, 260. doi: 10.1186/1756-0500-3-260.
Osland, A. M., Vestby, L. K., Fanuelsen, H., Slettemeas, J. S., & Sunde, M. (2012). Clonal diversity and biofilm-forming ability of methicillin-resistant Staphylococcus pseudintermedius. Journal Antimicrobial Chemotherapy, 67(4), 841 – 848. doi: 10.1093/jac/dkr576.
Papenfort, K., & Bassler, B. (2016). Quorum-Sensing Signal-Response Systems in Gram-NegativeBacteria. Nature Reviews Microbiology, 14, 576 – 588. doi.org/10.1038/nrmicro.2016.89.
Parikh, R., Mathai, A., Parikh, S., Sekhar, G.C., & Thomas, R. (2008). Understanding and using sensitivity, specificity and predictive values. Indian Journal of Ophthalmology. 56(1), 45 – 50. doi: 10.4103/0301-4738.37595
Phuket, D. Charbang, P. Sthitmatee N., & Prachasilchai, W. (2016). Study of bacterial species and antimicrobial sensitivity in canine oral cavity at Small Animal Teaching Hospital, Chiang Mai University. Chiang Mai Veterinary Journal, 14(3), 108 – 117.
Rania, M. A. H., Kassem, N. N, & Mahmoud, B. S. (2018). Detection of biofilm producing Staphylococci among different clinical isolates and its relation to methicillin susceptibility. Journal of Medical Sciences, 6(8), 1335–1341. doi: 10.3889/oamjms.2018.246
Saha, R., Arora, S., & Das, S., (2004). Detection of biofilm formation in urinary isolates: need of the hour. Journal of Research in Biology, 4(1), 1174–1181.
Sharvari, S. A., & Chitra, P. G. (2012). Evaluation of different detection methods of biofilm formation in clinical isolates of staphylococci. International Journal of pharma and Bio Sciences, 3(4), 724-733.
Triveda, L., & Gomathi, S. (2016). Detection of biofilm formation among the clinical is of Enterococci: An evaluation of three different screening methods. International Journal of Current Microbiology and Applied Sciences, 5(3), 643 – 650. doi: 10.20546/ijcmas.2016.503.075.
Watson, W. T., Minogue, T. D., Val, D. L., Bodman, S. B., & Churchill, M. E. (2002). Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Molecular Cell, 9(3): 685 – 694. doi: 10.1016/s1097-2765(02)00480-x.