การเสริมซิมไบโอติกส์ธรรมชาติจากเปลือกโกโก้หมักต่อประสิทธิภาพการให้ผลผลิตค่าโลหิตวิทยาและคุณภาพไข่ในไก่ไข่
Main Article Content
บทคัดย่อ
ซิมไบโอติกส์ธรรมชาติจากเปลือกโกโก้ (Natural symbiotics from cocoa husk silage, NSCOS) เป็นสารเสริมที่ผลิตจากการนำเปลือกโกโก้หมักร่วมกับน้ำหมักจุลินทรีย์แลคติกที่ขยายเชื้อจากใบหญ้าเนเปียร์และสามารถนำมาใช้เป็นสารเสริมในอาหารสัตว์ได้ งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาผลของการเสริม NSCOS ต่อผลผลิตและคุณภาพไข่ในไก่ไข่ โดยใช้ ไก่ไข่เพศเมีย สายพันธุ์โรมันบราวน์ อายุ 50 สัปดาห์ จำนวน 144 ตัว วางแผนการทดลองแบบสุ่มสมบูรณ์ โดยแบ่งให้ไก่ไข่ได้รับสูตรอาหารที่แตกต่างกัน 3 กลุ่มทดลอง ดังนี้ กลุ่มที่ 1 อาหารควบคุมโปรตีน 18 เปอร์เซ็นต์ กลุ่มที่ 2 อาหารควบคุมเสริมเปลือกโกโก้ 2 เปอร์เซ็นต์ และกลุ่มที่ 3 อาหารควบคุมเสริม NSCOS 2 เปอร์เซ็นต์ ทำการทดลอง 60 วัน จากการทดลองพบว่า การเสริมเปลือกโกโก้และการเสริม NSCOS ไม่ส่งผลต่อปริมาณการกินได้และปริมาณผลผลิตไข่ (p>0.05) ขณะที่อัตราการเปลี่ยนอาหารเป็นน้ำหนักไข่มีค่าต่ำสุดในไก่ไข่ที่เสริม NSCOS (p<0.05) การย่อยได้ของวัตถุแห้ง อินทรีย์วัตถุ และเยื่อใยมีค่าเพิ่มขึ้น ขณะที่อัตราส่วนของค่า H:L ratio มีค่าลดลง (p<0.05) ในไก่ไข่ที่เสริมเปลือกโกโก้และเสริม NSCOS คุณภาพไข่ในส่วนของ ความสูงไข่แดง และค่า Haugh unit มีค่าเพิ่มขึ้น (p<0.05) ในไก่ไข่ที่เสริม NSCOS เมื่อเปรียบเทียบกับกลุ่มควบคุมและกลุ่มที่เสริมเปลือกโกโก้ แสดงให้เห็นว่าซิมไบโอติกส์ธรรมชาติที่ได้จากเปลือกโกโก้ NSCOS สามารถใช้เป็นเสริมในอาหารไก่ไข่ได้ โดยส่งผลดีต่ออัตราการเปลี่ยนอาหารเป็นไข่และคุณภาพไข่
Article Details
เอกสารอ้างอิง
Association of official analytical chemists (AOAC). (1995). Official methods of analysis (16th ed.). Washington D. C, USA: Association of official analytical chemists.
Bai, K., Huang, Q., Zhang, J., He, J., Zhang, L., & Wang, T. (2017). Supplemental effects of probiotics
Bacillus subtilis fmbJon growth performance, antioxidant capacity, and meat quality of broilers chickens. Poultry Science, 96, 74–82. doi:10.3382/ps/pew246.
Bureenok, S., Tamaki, M., Kawamoto, Y., & Nakada, T. (2007). Additive effects of green tea on
fermented juice of the epiphytic lactic acid bacteria (FJLB) and the fermentative quality of Rhodes grass silage. Asian-Australasian Journal of Animal Sciences, 20, 920-924. doi:10.5713/ajas.2007.920
Cabuk, M., Bozkurt, M., Alcicek, A., Catli, A. U., & Baser, K. H. C. (2006). Effect of a dietary essential oil mixture on performance of laying hens in the summer season. South African Journal of Animal Science, 36(4), 215-221.
Chaiwong, S., Yakab, M., Kanthiya, N., Nopparatmaitree, M., Sintala, K., Kullama, P., Boarapa, R., &
Srakaew, W. (2023). Effects of dietary corn malt-sactic on growth performance, nutrient digestibility and microbial population in posterior gut of broilers. Khon Kaen Agriculture Journal, 51(3), 547-560. doi:10.14456/kaj.2023.42. (in Thai)
Chungsiriporn, J., Pongyeela, P., & Chairerk, N. (2022). Effect of using dried cocoa pod husk as an ingredient in laying hen feed on egg production and quality. Journal of Science and Technology, Ubon Ratchathani University, 24(3), 11-19. (in Thai)
Fenton, T. W., & Fenton, M. (1979). An improved procedure for the determination of chromic oxide in feed and feces. Canadian Journal of Animal Science, 170(1–2), 117-121. doi:10.4141/CJAS79-081.
Harmon, B. G. (1998). Avian heterophils in inflammation and disease resistance. Poultry Science, 77(7), 972-977. doi: 10.1093/ps/77.7.972.
Hou, W. C., Lin, R. D., Cheng, K. T., Hung, Y. T., Cho, C. H., Chen, C. H., Hwang, S. Y., & Lee, M. H. (2003). Free radical-scavenging activity of Taiwanese native plants. Phytomedicine, 10, 170-175. doi: 10.1078/094471103321659898.
Hu, C. H., Zuo, A. Y., Wang, D. G., Pan, H. Y., Zheng, W. B., Qian, Z. C., & Zou, X. T. (2011). Effects of broccoli stems and leaves meal on production performance and egg quality of laying hens. Animal Feed Science and Technology, 170(1–2), 117-121. doi:10.1016/j.anifeedsci.2011.07.019.
Jain, N. C. (1993). Essential of veterinary hematology. Philadelphia, USA: Lea & Febiger.
Julian, R. J. (2000). Physiological management and environmental triggers of the ascites syndrome: a review. Poultry International: Avian Pathology, 29(6), 519-527. doi: 10.1080/03079450020016751.
Józefiak, D., Rutkowski, A., & Martin, S. A. (2004). Carbohydrate fermentation in the avian ceca: a review. Animal Feed Science and Technology, 113, 1–15. doi: 10.1016/j.anifeedsci.2003.09.007.
Kemperman, R. A., Bolca, S., Roger, L. C., & Vaughan, E. E. (2010). Novelapproaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology, 156, 3224−3231. doi: 10.1099/mic.0.042127-0.
Lokhande, A., Ingale, S. L., Lee, S. H., Kim, J. S., Lohakare, J. D., Chae, B. J., & Kwon, I. K. (2013). The effects of Rhodobacter capsulatus KCTC-2583 on cholesterol metabolism, egg production and quality parameters during the late laying periods in hens. Asian-Australasian Journal of Animal Sciences, 26(6), 831-837. doi: 10.5713/ajas.2012.12559.
Makivic, L., Glisic, M., Boskovic, M., Djordjevic, J., Markovic, R., Baltic, M., & Sefer, D. (2019).
Performances, ileal and cecal microbial populations and histological characteristics in broilers fed diets supplemented with lignocellulose. Journal of Kafkas Universitesi Veteriner Fakultesi Dergisi, 25, 83-91. doi: 10.9775/kvfd.2018.20356.
Mikulski, D., Jankowski, J., Naczmanski, J., Mikulska, M., & Demey, V. (2012). Effects of dietary probiotics (Pediococcus acidilactici) supplementation on performance, nutrient digestibility, egg traits, egg yolk cholesterol, and fatty acid profile in laying hens. Poultry Science, 91(10), 2691-2700. doi: 10.3382/ps.2012-02370.
Mountzouris, K. C., Paraskevas, V., Tsirtsikos, P., Palamidi, I., Steiner, T., Schatzmayr, G., & Fegeros, K. (2011). Assessment of a phytogenic feed additive effect on broiler growth performance, nutrient digestibility and caecal microflora composition. Animal Feed Science and Technology, 168(3), 223-231. doi: 10.1016/j.anifeedsci.2011.03.020.
Nabizadeh, A. (2012). The effect of inulin on broiler chicken intestinal microflora, gut morphology, and performance. Journal of Animal and Feed Sciences, 21, 725–734. doi: 10.22358/jafs/ 66144/2012.
National Research Council (NRC). (1994). Nutrient requirements of poultry (9th ed.). USA: National Academy Press.
Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear statistical models (4thed.). New York, USA: WCB McGraw-Hill.
Nopparatmaitree, M., Panthong, A., Paengkoum, S., & Saenphoom, P. (2014). Effects of asparagus trims by-product supplementation in laying hens diets on nutrient digestibility and productive performance. Silpakorn University Science and Technology Journal, 8(1), 74-82. doi: 10.14456/sustj.2014.6.
Qingming, Y., Xianhui, P., Weibao, K., Hong, Y., Yidan, S., Li, Z., Yanan, Z., Yuling, Y., Lan D., & Guoan, L. (2010). Antioxidant activities of malt extract from barley (Hordeum vulgare L.) toward various oxidative stress in-vitro and in-vivo. Food Chemistry, 118(1), 84-89. doi: 10.1016/j.foodchem. 2009.04.094.
Ragab, H. I., Abdel Ati, K. A., Kijora, C., & Ibrahim, S. (2012). Effect of different levels of the processed lab pureus seeds on laying performance, egg quality and serum parameters. International Journal of Poultry Science, 11(2), 131-137. doi:10.3923/ijps.2012.131.137.
Statistical Analysis System (SAS). (1998). User's guide: statistic, version 6 (12th ed.). North Carolina, USA: SAS Institute Inc.
Sharifi, S. D., Dibamerhr, A., Lotfollahian H., & Baurhoo, B. (2012). Effects of flavomycin and probiotics supplementation to diets containing different sources of fat on growth performance, intestinal morphology, apparent metabolizable energy, and fat digestibility in broiler chickens. Poultry Science, 91(4), 918-927. doi: 10.3382/ps.2011-01844.
Srakaew, W., Leepradit, P., Chaiwong, S., Boarapa, R., Sintala, K., & Kuha, K. (2021). Ensiling corn malt on chemical composition and gas production kinetic by using in vitro gas production technique. Khon Kaen Agriculture Journal, 49(Suppl.1), 496-501. (in Thai)
Tachakittirungrod, S., Okonogi, S., & Chowwanapoonpohn, S. (2007). Study on antioxidant activity of certain plant in Thailand: mechanism of antioxidant action of guava leaf extract. Food Chemistry, 103(2), 381-388. doi: 10.1016/j.foodchem.2006.07.034.
Topping, D. L., & Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: roles of resistant starch and non starch polysaccharides. Physiological Reviews, 81, 1031-1064.
doi: 10.1152/physrev.2001.81.3.1031.
Younes, A., Li, M., & Karboune, S. (2022). Cocoa bean shells: a review into the chemical profile, the
bioactivity and the biotransformation to enhance their potential applications in foods. Critical Reviews in Food Science and Nutrition, 63(28), 9111-9135. doi: 10.1080/10408398.2022.2065659.
Zhang, L., Li, X., Xu, X., & Zeng, F. (2005). Correlation between antitumor activity, molecular weight, and conformation of lentinan. Carbohydrate Research, 340(8), 1515-1521. doi: 10.1016/j.
carres.2005.02.032.
Zhang, M., Zou, X. T., Li, H., Dong, X. Y., & Zhao, W. (2012). Effect of dietary gamma-aminobutyric acid on laying performance, egg quality, immune activity and endocrine hormone in heat-stressed Roman hens. Animal Science Journal, 83(2), 141-147. doi: 10.1111/j.1740-0929.2011.
x.
Zhao, R., Wang, Y., Zhou, Y., Ni, Y., Lu, L., Grossmann, L., & Chen, J. (2004). Dietary daidzein influences laying performance of ducks (Anas platyrhynchos) and early post-hatch growth of their hatchlings by modulating gene expression. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 138(4), 459-466. doi: 10.1016/j.cbpb.2004.06.004.
Zhou, X., Wang, Y., Gu, Q., & Li, W. (2010). Effect of dietary probiotics, Bacillus coagulans, on growth performance, chemical composition, and meat quality of Guangxi yellow chicken. Poultry Science, 89(3), 588-593. doi: 10.3382/ps.2009-00319.