Dietary tamarind (Tamarindus indica) seed husk supplementation in rooster on reproductive performances and cool storage semen
Main Article Content
Abstract
The objective of this study was to determine the effects of dietary tamarind seed husk (TSH) supplementation on rooster semen quality. TSH was extracted using a spray dryer. The phenolic and total phenolic contents were analyzed and found to be 7435.08 mg/g DM and 503.95 mg/g DM, respectively. Antioxidant activity was assessed using various assays, including radical scavenging capacity, ferric reducing antioxidant power (FRAP) assay (3538.56 μM FeSO₄/ml), 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay (85.70%), and Trolox equivalent antioxidant capacity (TEAC) assay (69.81%), indicating that TSH possesses high antioxidant activity. The experiment followed a randomized complete block design (RCBD). Twenty-four Thai native roosters (1–1.5 years old) were divided into four groups. The four treatments included dietary TSH supplementation at 0, 0.3, 0.6, and 0.9 mg/kg. Semen was collected twice per week for six weeks. Different storage temperatures (5 °C and 25 °C) and durations (0, 12, and 24 hours) were used to evaluate semen quality and determine the optimal storage conditions. Semen quality evaluation included motion parameters, progressive motility, and viability. The results indicated that total motility, progressive motility, and the percentage of viable sperm in the 0.6 mg/kg TSH group were significantly higher than in the other groups (p< 0.05). These findings suggest that dietary supplementation with 0.6 mg/kg TSH improves the quality of fresh semen, particularly in terms of motion parameters and sperm viability, making it suitable for semen storage or artificial insemination in roosters.
Article Details
References
Boonkum, W., Duangjinda, M., Kananit, S., Chankitisakul, V., & Kenchaiwong, W. (2021). Genetic effect and growth curve parameter estimation under heat stress in slow-growing Thai native chickens. Veterinary Sciences, 8(12), 297. doi: 10.3390/vetsci8120297.
Bréque, C., Surai, P., & Brilard, J. -P. (2003). Roles of antioxidants on prolonged storage of avian spermatozoa in vivo and in vitro. Molecular Reproduction and Development, 66(3), 314-323. doi: 10.1002/mrd.10347.
Çalişlar, S. (2018). Effects of tannins on poultry nutrition. Kahramanmaraş Sütçü İmam University Journal of Agriculture and Nature, 21(4), 615-623. doi: 10.18016/ksudobil.359982.
Chen, Z., Zhang, J. R., Zhou, Y. W., Liang, C., & Jiang, Y. Y. (2015). Effect of heat stress on the pituitary and testicular development of Wenchang chicks. Archives Animal Breeding, 58(2), 373-378. doi: 10.5194/aab-58-373-2015.
Chuaychu-noo, N., Thananurak, P., Boonkum, W., Vongpralub, T., & Chankitisakul, V. (2021). Effect of organic selenium dietary supplementation on quality and fertility of cryopreserved chicken sperm. Cryobiology, 98, 57-62. doi: 10.1016/j.cryobiol.2020.12.008.
Donoghue, A. M., & Wishart, G. J. (2000). Storage of poultry semen. Animal Reproduction Science, 62(1–3), 213-232 doi: 10.1016/S0378-4320(00)00160-3.
Fouad, A. M., El-Senousey, H. A. K., Ruan, D., Xia, W., Chen, W., Wang, S., & Zheng C. (2020). Nutritional modulation of fertility in male poultry. Poultry Science, 99(11), 5637-5646. doi: 10.1016/j.psj.2020.06.083.
Kheawkanha, T., Chankitisakul, V., Thananurak, P., Pimprasert, M., Boonkum, W., & Vongpralub, T. (2023). Solid storage supplemented with serine of rooster semen enhances higher sperm quality and fertility potential during storage at 5 °C for up to 120 h. Poultry Science, 102(6), 102648 doi: 10.1016/j.psj.2023.102648.
Loengbudnark, W., Chankitisakul, V., & Boonkum, W. (2023) The genetic impact of heat stress on the egg production of Thai native chickens (Pradu Hang dum). PLoS One, 18(2), e0281328. doi: 10.1371/journal.pone.0281328.
Ly, C. J., Yockell-Leliévre, Z. M., Ferraro, J. T., Arnason, J., Ferrier, J., & Gruslin, A. (2015). The effects of dietary polyphenols on reproductive health and early development. Human Reproduction Update, 21(2), 228-248. doi: 10.1093/humupd/dmu058. (
Partyka, A., Łukaszewicz, E., & Nizanski, W. (2012). Effect of cryopreservation on sperm parameters, lipid peroxidation and antioxidant enzymes activity in fowl semen. Theriogenology, 77(8), 1497-1504. doi: 10.1016/j.theriogenology.2011.11.006.
Ramamoorthy, P. K., & Bono, A. (2007). Antioxidant activity, total phenolic and flavonoid content of morinda citrifolia fruit extracts from various extraction processes. Journal of Engineering Science and Technology, 2(1), 70-80.
Ros-Santaella, J. L., & Pintus, E. (2021). Plant extracts as alternative additives for sperm preservation. Antioxidants, 10, 772. doi: 10.3390/antiox10050772.
Sánchez-Moreno, C., Larrauri, J. A., & Saura-Calixto, F. (1999). Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Research International, 32(6), 407-412. doi: 10.1016/S0963-9969(99)00097-6.
Sandesh, P., Velu, V., & Singh, R. P. (2014). Antioxidant activities of tamarind (Tamarindus Indica) seed coat extracts using in vitro and in vivo models. Journal of Food Science and Technology, 51(9), 1965-1973. doi: 10.1007/s13197-013-1210-9.
SAS. (1997). SAS/STAT user’s guide: Version 6.12.(4 th ed.). Carry, North Carolina, United States: SAS Institute Inc.
Schramm, G. P. (1991). Suitability of different cryoprotectants for cock semen. Monatshefte für Veterinärmedizin, 46, 438-440.
Silberstein, T., Har-Vardi, I., Harlev, A., Friger, M., Hamou, B., Barac, T., Levitas, E., & Saphier, O. (2016). Antioxidants and polyphenols: concentrations and relation to male infertility and treatment success. Oxidative Medicine and Cellular Longevity, 9140925. doi: 10.1155/2016/9140925
Simões, R., Feitosa, W. B., Siqueira, A. F. P., Nichi, M., Paula-Lopes, F. F., Marques, M. G., Peres, M. A., Barnabe, V. H., Visintin, J. A., & Assumpção, M. E. O. (2013). Influence of bovine sperm DNA fragmentation and oxidative stress on early embryo in vitro development outcome. Reproduction, 146, 433–441. doi: 10.1530/REP-13-0123.
Sinchaiyakit, P., Ezure, Y., Sriprang, S., Pongbangpho, S., Povichit, N., & Suttajit, M. (2011). Tannins of tamarind seed husk: preparation, structural characterization, and antioxidant activities. Natural Product Communications, 6(6), 829-834. doi: 10.1177/1934578X1100600619.
Sittikijyothin, W., & Cherdwongcharoensuk, D. (2011). Free radical scavenging activity of seed coat extracts
of sweet and sour tamarinds. Burapha Science Journal, 16(1), 47-55. (in Thai)
Suksomtip, M., & Pongsamart, S. (2008). Protective effect against oxidation of human low-density lipoprotein and plasmid DNA strand scission of Tamarind seed coat extract in vitro. Food Science and Technology, 41(10), 2002-2007. doi: 10.1016/j.lwt.2008.01.018.
Thananurak, P., Chuaychu-noo, N., Thélie, A., Phasuk, Y., Vongpralub, T., & Blesbois, E. (2019). Sucrose increases the quality and fertilizing ability of cryopreserved chicken sperms in contrast to raffinose. Poultry Science, 98(9), 4161-4171. doi: 10.3382/ps/pez196.
Thanomwongwatana, S. (2018). Application of phenolic extracts from tamarind seed husk to inhibit the formation of antoxidants in animal feeds. Proceeding of the 1st International conference of food and agriculture (pp. 222-227). Indonesia: Politeknik Negeri Jember.
Tril, U., Fernandez-Lopez, J., Alvarez, J. A. P., & Viuda-Martos, M. (2014). Chemical, physicochemical, technological, antibacterial and antioxidant properties of rich-fiber powder extract obtained from tamarind (Tamarindus indica L.). Industrial Crops and Products, 55, 155-162. doi: 10.1016/j.indcrop.2014.01.047.