The effect of recirculating aquaculture system (RAS) on hematology water quality and growth performance of red tilapia (Oreochromis niloticus X O. mossambicus)

Main Article Content

Nitchanan Chukerd
Phutthaphorn Phumrojana
Suksan Kumkhong

Abstract

This study aimed to evaluate the performance of two aquaculture systems, changed fish tank water (CFT) and recirculating aquaculture systems (RAS), using 6 pounds of Red Tilapia (Oreochromis niloticus × O. mossambicus) per experimental unit. The initial body weight of the fish was 10.20±0.05 g, with 12 fish per pond, and the rearing period lasted 60 days. Parameters assessed included growth performance (final body weight [FBW], average daily gain [ADG], specific growth rate [SGR], feed conversion ratio [FCR], and survival rate [SR]); hematology (red blood cell count [RBC], hemoglobin [Hb], hematocrit [Ht], glucose [Glu], triglyceride [TG], and total protein [TP]); and water quality (ammonia [NH₃], nitrite [NO₂⁻], nitrate [NO₃⁻], total bacteria, Vibrio spp., yeast and fungi, and total suspended solids [TSS]). These were used as indicators for developing commercial aquaculture systems. At the end of the experiment, the RAS group showed significantly improved growth performance compared to the CFT group: FBW was 95.46±4.72 g, ADG was 1.59±0.08 g/day, SGR was 3.89±0.07 %/day, FCR was 1.56±0.07, and SR was 97.5±2.74%. Hematocrit (26.26±1.10%) and total protein (35.86±1.38 g/L) were also significantly higher in the RAS group than in the CFT group, which had Ht and TP values of 23.08±1.22% and 32.57±0.34 g/L, respectively (p<0.05). Additionally, the RAS system showed significantly lower levels of NO₃⁻ and TSS compared to the CFT system (p<0.05), without significant differences in microbial populations between the two systems (p>0.05). Therefore, culturing Red Tilapia in a RAS can enhance growth performance, feed utilization, and survival rate. Furthermore, the RAS can reduce NO₃⁻ and TSS levels as well as water usage, without compromising water quality.

Article Details

How to Cite
Chukerd, N. ., Phumrojana, P. ., & Kumkhong, S. . (2025). The effect of recirculating aquaculture system (RAS) on hematology water quality and growth performance of red tilapia (Oreochromis niloticus X O. mossambicus). Prawarun Agricultural Journal, 22(1), 67–77. https://doi.org/10.14456/paj.2025.8
Section
Research Articles

References

Abdel-Tawwab, M., Hagras, A. E., Elbaghdady, H. A. M., & Monier, M. N. (2014). Dissolved oxygen level andstocking density effects on growth, feed utilization, physiology, and innate immunity of Nile tilapia,Oreochromis niloticus. Journal of Applied Aquaculture, 26(4), 340-355. doi:10.1080/10454438.2014.959830.

Aich, N., Nama, S., Biswal, A., & Paul, T. (2020). A review on recirculating aquaculture systems: challenges and opportunities for sustainable aquaculture. Innovative Farming, 5(1), 17-24.

Association of Official Analytical Chemists (AOAC). (2010). Official methods of analysis (18th ed.). Washington D. C., United States: Association of Official Analytical Chemists.

Arredondo-Figueroa, J. L., Núñez-García, L. G., Ponce-Palafox, J. T., & Ángeles Barriga-SosaI, I. L. (2015). Performance of brooders, fry and growth of the Nile tilapia (Oreochromis niloticus) cultured in an experimental recirculating aquaculture system. Agricultural Sciences, 6(9), 1014–1022. doi:10.4236/as.2015.69096.

Arechavala-Lopez, P., Nazzaro-Alvarez, J., Jardí-Pons, A., Reig, L., Carella, F., Carrassón, M., & Roque, A. (2020). Linking stocking densities and feeding strategies with social and individual stress responses on gilthead seabream (Sparus aurata). Physiology and Behavior, 213, 112723. doi: 10.1016/j.physbeh.2019.112723.

Atse, B. C., Konan, K. J., Alla, Y. L., & Pangini, K. (2009). Effect of rearing density and feeding regimes on growth and survival of African catfish, Heterobranchus longifilis (Valenceinnes, 1840) larvae in a closed recirculating aquaculture system. Journal of Applied Aquaculture, 21(3), 183–195. doi:10.1080/10454430903113669.

Badiola, M., Basurko, O. C., Piedrahita, R., Hundley, P., & Mendiola, D. (2018). Energy use in recirculating aquaculture systems (RAS): A review. Aquacultural Engineering, 81: 57–70. doi: 10.1016/j.aquaeng.2018.03.003.

Behrends, L. L., Nelson, R. G., Smitherman, R. O., & Stone, N. M. (1982). Breeding and culture of the red-gold color phase of tilapia. Journal of the World Mariculture Society, 13, 210–220. doi: 10.1111/j.1749-7345.1982.tb00028.

Bucolo, G., & David, H. (1973). Quantitative determination of serum triglycerides by the use of enzymes. Clinical Chemistry, 19(5), 476–482.

Cacho, J., Moura, R., & Henry-Silva, G. G. (2020). Influence of Nile tilapia (Oreochromis niloticus) fish farming in net cages on the nutrient and particulate matter sedimentation rates in Umari reservoir, Brazilian semi-arid. Aquaculture Reports, 17, 100358. doi: 10.1016/j.aqrep.2020.100358

Crouse, C., Knight, A., May, T., Davidson, J., & Good, C. (2023). Performance, processing yields, and fillet composition of specific United States diploid and triploid rainbow trout (Oncorhynchus mykiss) lines reared in a semi-commercial scale freshwater recirculating aquaculture system. Aquaculture Reports, 33, 101794. doi: 10.1016/j.aqrep.2023.101794.

Dalsgaard, J., Lund, I., Thorarinsdottir, R., Drengstig, A., Arvonen, K., & Pedersen, P. B. (2013). Farming different species in RAS in Nordic countries: Current status and future perspectives. Aquacultural Engineering, 53, 2–13. doi: 10.1016/j.aquaeng.2012.11.008

Department of Fisheries. (2023). Statistics of freshwater aquaculture production for the year 2022. Accessed January 15, 2024. Retrieved from: https://www4.fisheries.go.th/local/file_document/20230725093333_1_file.pdf. (in Thai)

Dey, M. M., & Gupta, M. V. (2000). Socioeconomics of disseminating genetically improved Nile tilapia in Asia: An introduction. Aquaculture Economics and Management, 4(1-2), 5–11. doi:10.1080/13657300009380257.

Docan, A., Cristea, V., Dediu, L., Mocanu, M., & Grecu, I. (2011). The impact of level of the stocking density on the haematological parameters of rainbow trout (Oncorhynchus mykiss) reared in recirculating aquaculture systems. Aquaculture, Aquarium, Conservation & Legislation International Journal of the Bioflux Society, 4(4), 536-541.

d’Orbcastel, E. R., Blancheton, J. P., & Aubin, J. (2009). Towards environmentally sustainable aquaculture: comparison between two trout farming systems using life cycle assessment. Aquacultural Engineering, 40(3),113-119. doi: 10.1016/j.aquaeng.2008.12.002.

Emparanza, E. J. M. (2009). Problems affecting nitrification in commercial RAS with fixed-bed biofilters for salmonids in Chile. Aquacultural Engineering, 41(2), 91–96. doi: 10.1016/j.aquaeng.2009.06.010.

Food and Agriculture Organization (FAO). (2021). Handbook on enhancing the entrepreneurial capability of farmers. FAO: Bangkok, Thailand.

Food and Agriculture Organization (FAO) (2020). The state of world fisheries and aquaculture 2020. FAO: Rome, Italy.

Good, C., Davidson, J., Welsh, C., Brazil, B., Snekvik, K., & Summerfelt, S. (2009). The impact of water exchange rate on the health and performance of rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems. Aquaculture, 294 (1-2), 80–85. doi: 10.1016/j.aquaculture.2009.05.014.

Gornall, A. G., Bardawill, C. J., & David, M. M. (1949). Determination of serum proteins by means of the biuret reacton. Journal of Biological Chemistry, 177(2), 751–766.

Gullian-Klanian, M., & Arámburu-Adame, C. (2013). Performance of Nile tilapia Oreochromis niloticus fingerlings in a hyper-intensive recirculating aquaculture system with low water exchange. Latin American Journal of Aquatic Research, 41(1), 150–162. doi: 103856/vol41-issue1-fulltext-12.

Haku´c-Błazowska, A., Turkowski, K., Czarkowski, T. K., Zarski, D., Krejszeff, S., Król, J., & Kupren, K. (2024). Optimizing Eurasian perch production: Innovative aquaculture in earthen ponds using RAS and RAMPS—economic perspective. Animals (Basel), 14(21), 3100. doi: 10.3390/ ani14213100.

Jelkic, D., Opacak, A., Stevic, I., Ozimec, S., Jug-Dujakovic, J., & Safner, R. (2012). Rearing carp larvae (Cyprinus carpio) in closed recirculatory system (RAS). Croatian Journal of Fisheries, 70(1), 9-17.

Kumkhong, S., Marandel, L., Plagnes-Juan, E., Veron, V., Panserat, S., & Boonanuntanasarn, S. (2021). Glucose injection into the yolk influences intermediary metabolism in adult Nile tilapia fed with high levels of carbohydrates. Animal, 15(9), 100347. doi:10.1016/j.animal.2021.100347.

Lal, J., Vaishnav, A., Deb, S., Kashyap, S., Debbarma, P., Devati, Gautam, P., Pavankalyan, M., Kumari, K., & Verma, D. K. (2024). Re-circulatory aquaculture systems: a pathway to sustainable fish farming. Archives of Current Research International, 24(5), 799-810. doi:10.9734/acri/2024/v24i5756

Li, X., Ji, L., Wu, L., Gao, X., Li, X., Li, J., & Liu, Y. (2019). Effect of flow velocity on the growth, stress and immune responses of turbot (Scophthalmus maximus) in recirculating aquaculture systems. Fish and Shellfish Immunology, 86, 1169–1176. doi: 10.1016/j.fsi.2018.12.066.

Liu, B., Jia, R., Zhao, K., Wang, G., Lei, J., & Huang, B. (2017). Stocking density effects on growth and stress response of juvenile turbot (Scophthalmus maximus) reared in land-based recirculating aquaculture system. Acta Oceanologica Sinica, 36(10), 31–38. doi:10.1007/s13131-017-0976-4.

Malone, R. F., & Pfeiffer, T. J. (2006). Rating fixed film nitrifying biofilters used in recirculating aquaculture systems. Aquacultural Engineering, 34(3), 389–402. doi: 10.1016/j.aquaeng.2005.08.007.

Mugwanya, M., Dawood, M. A. O., Kimera, F., & Sewilam, H. (2020). A review on recirculating aquaculture system: influence of stocking density on fish and crustacean behavior, growth performance, and immunity. Annals of Animal Science, 22(3), 873–884. doi:10.2478/aoas-2022-0014.

Nuwansi, K. K. T., Verma, A. K., Tiwari, V. K., Prakash, C., & Chandrakant, M. (2017). Standardization of the stocking density ratios of Koi carp (Cyprinus carpio var. koi): Goldfish (Carassius auratus) in polyculture aquaponic recirculating system. Turkish Journal of Fisheries and Aquatic Sciences, 17, 1271-1278. doi: 10.4194/1303-2712-v17_6_20.

Pal, G. K., & Pal, P. (2006). Textbook Of Practical Physiology (2nd Ed.). Chennai, India: Orient Longman Private Limited.

Rawling, M. D., Merrifield, D. L., & Davies, S. J. (2009). Preliminary assessment of dietary supplementation of Sangrovit on red tilapia (Oreochromis niloticus) growth performance and health. Aquaculture, 294(1-2), 118-122. doi:10.1016/j.aquaculture.2009.05.005.

Roque d’Orbcastel, E., Blancheton, J. P., & Belaud, A. (2009). Water quality and rainbow trout performance in a Danish Model Farm recirculating system: comparison with a flow-through system. Aquacultural Engineering, 40(3), 135–143. doi: 10.1016/j.aquaeng.2009.02.002.

Sakunphun, S., Uppapong, K., Junkawee, T., Palas, P., & Roonreangjai, R. (2024). Enhancing community economy through a new value chain of red tilapia in Lum Nam Nan, Uttaradit Province, Thailand. Area Based Development Research Journal, 16(4), 329-345. doi: 10.48048/abcj.2024.329 (in Thai)

Santos, G. A., Schrama, J. W., Mamauag, R. E. P., Rombout, J. H. W. M., & Verreth, J. A. J. (2010). Chronic stress impairs performance, energy metabolism and welfare indicators in European seabass (Dicentrarchus labrax): The combined effects of fish crowding and water quality deterioration. Aquaculture, 299(1-4), 73–80. doi: 10.1016/j.aquaculture.2009.11.018.

Taufik, M., Ismail, T. I. T., Manan, H., Ikhwanuddin, M., Salam, A. I. A., Rahim, A. I. A., Ishak, A. N., Kamaruzzan, A. S., Draman, A. S., & Kasan, N. A. (2024). Synergistic effects of Recirculating Aquaculture System (RAS) with combination of clear water, probiotic and biofloc technology: A review. Aquaculture and Fisheries, 9(6), 883-892. doi: 10.1016/j.aaf.2023.07.006.

Trinder, P. (1969). Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. Journal of Clinical Pathology, 22(2), 158–161. doi: 10.1136/jcp.22.2.158.

Voight, G. L. (2000). Hematology techniques and concepts for Veterinary technicians. Iowa, United States: Iowa State University Digital Press.

Wang, S., Jiang, Z., & Mousavi, S. E. (2019). Effect of seawater pH on selected blood biochemical parameters of juvenile turbot Scophthalmus maximus (Linnaeus, 1758). Indian Journal of Fisheries, 66(4), 78–83. doi:10.21077/ijf.2019.66.4.92173-10.

Xue, B., Zhao, Y., Bi, C., Cheng, Y., Ren, X., & Liu, Y. (2022). Investigation of flow field and pollutant particle distribution in the aquaculture tank for fish farming based on computational fluid dynamics. Computers and Electronics in Agriculture, 200, 107243. doi: 10.1016/j.compag.2022.107243.

Zhao, Y. P., Xue, B., Bi, C., Ren, X., & Liu, Y. (2022). Influence mechanisms of macro-infrastructure on micro-environments in the recirculating aquaculture system and biofloc technology system. Reviews in Aquaculture, 15(3), 991–1009. doi: 10.1111/raq.12713.