Effect of Water Extraction Temperature on the Efficiency of α-Glucosidase Inhibition by Flavonoids from Dried Cannabis Leaves
Main Article Content
Abstract
This study aimed to evaluate the α-glucosidase inhibitory activity of flavonoids extracted with water from dried cannabis leaves. Flavonoid extraction was performed using water at 40°C, 80°C, and 100°C. The flavonoid content was analyzed using the Aluminum Chloride Colorimetric Assay, while α-glucosidase inhibitory activity was assessed using the Dinitrosalicylic Acid (DNS) Assay. The results indicated that extraction at 100°C yielded the highest flavonoid content (1.12 mg QE/g extract). The extracted flavonoids were identified as water-soluble flavonoid glycosides that demonstrated significant α-glucosidase inhibitory potential. The IC50 value of the flavonoid extract was determined to be 97.36 µg/mL, compared to 14.81 µg/mL for acarbose. The results confirmed that higher water temperatures significantly enhance the dissolution and release of flavonoids. This study highlights the potential of developing cannabis leaf tea products to help reduce blood sugar levels, which could be beneficial for managing type 2 diabetes. Furthermore, the findings support the sustainable use of medicinal plants in traditional and alternative Thai medicine.
Article Details
References
Bao, Y., Liu, H., Yang, J., Gupta, V. K., & Jiang, Y. (2018). New insights on bioactivities and biosynthesis of
flavonoid glycosides. Trends in Food Science & Technology, 79, 116-124.
doi: 10.1016/j.tifs.2018.07.006
Bautista, J. L., Yu, S., & Tian, L. (2021). Flavonoids in Cannabis sativa: Biosynthesis, bioactivities, and
biotechnology. ACS Omega, 6(8), 5119-5123. doi: 10.1021/acsomega.1c00318
Chang, C., Yang, M., Wen, H. & Chern, J. (2002). Estimation of total flavonoid content in propolis by two
complementary colorimetric methods. Journal of Food Drug Analysis, 10, 178-182.
doi.org/10.38212/2224-6614.2748
Dirir, A. M., Daou, M., Yousef, A. F., & Yousef, L. F. (2022). A review of alpha-glucosidase inhibitors from
plants as potential candidates for the treatment of type-2 diabetes. Phytochemistry Reviews, 21(4), 1049-1079. doi: 10.1007/s11101-021-09773-1
He, C., Liu, X., Jiang, Z., Geng, S., Ma, H., & Liu, B. (2019). Interaction mechanism of flavonoids
and α-glucosidase: Experimental and molecular modelling studies. Foods, 8(9), 355.
doi.org/10.3390/foods8090355
Jain, N., & Ramawat, K. G. (2013). Nutraceuticals and Antioxidants in Prevention of Diseases. In: Ramawat, K.G., & Mérillon, JM. (eds) Natural Products (pp.2559-2580). Berlin, Germany: Springer.
Lajoie, L., Fabiano-Tixier, A.-S., & Chemat, F. (2022). Water as green solvent: Methods of solubilisation and
extraction of natural products -past, present and future solutions. Pharmaceuticals, 15(12), 1507.
doi.org/10.3390/ph15121507
Lertdetkajorn, K. (2022). The latest statistics on type 2 diabetes in Thailand. Accessed January 3, 2025.
Retrieved from https://www.healthdeliver.asia/blog/the-latest-statistics-on-type-2-diabetes-in-thailand
Liau, B.C., Ponnusamy, V. K., Lee, M.-R., Jong, T.-T., & Chen, J.-H. (2017). Development of pressurized hot
water extraction for five flavonoid glycosides from defatted Camellia oleifera seeds (byproducts). Industrial Crops and Products, 95, 296-304. doi: 10.1016/j.indcrop.2016.10.034
Lowe, H., Steele, B., Bryant, J., Toyang, N., & Ngwa, W. (2021). Non-cannabinoid metabolites of Cannabis
sativa L. with therapeutic potential. Plants, 10(2), 400. doi: 10.3390/plants10020400
Miller, N., & Joubert, E. (2022). Critical Assessment of In Vitro screening of α- Glucosidase inhibitors from plants with acarbose as a reference standard. Planta medica, 88(12), 1078-1091. doi.org/10.1055/a-1557-7379
Nithiprapawat, P., Therawiwat, M., Vatanasomboon, P., & Imamee, N. (2021). The Promotion Program for Food Consumption to Control Blood Sugar Levels Emphasizing Thai Herbal Food in Patients with Type 2 Diabetes. Journal of Thai Traditional and Alternative Medicine, 19(1), 74-86.
Niyomdecha, S., & Niyomdecha, M. (2022). Phytochemical screening and antioxidant activities of cannabis.
Journal of Academic for Public and Private Management, 4(2), 155-166. (in Thai)
Nowak, D., & Jakubczyk, E. (2020). The freeze-drying of foods: The characteristic of the process course and
the effect of its parameters on the physical properties of food materials. Foods, 9(10), 1488. doi.org/10.3390/foods9101488
Pandey, M., Verma, R. K., & Saraf, S. A. (2010). Nutraceuticals: new era of medicine and health. Asian
Journal of Pharmaceutical and Clinical Research, 3(1), 11- 15.
Pannico, A., Kyriacou, M. C., El-Nakhel, C., Graziani, G., Carillo, P., Corrado, G., Ritieni, A., Rouphael, Y., &
De Pascale, S. (2022). Hemp microgreens as an innovative functional food: Variation in the organic acids, amino acids, polyphenols, and cannabinoids composition of six hemp cultivars. Food Research International, 161, 111863. doi.org/10.1016/j.foodres.2022.111863
Pantong, W., Somsap, O., & Sujiwattanarat, P. (2024). Inhibitory effects of stink bean (Parkia speciosa)
extracts against α-amylase and α-glucosidase activity. Princess of Naradhiwas University Journal, 16(3), 301-315. (in Thai)
Parwata, A., Manuaba, P., & Yasa, S. (2018). The potency of flavonoid compounds in water extract Gyrinops
versteegii leaves as natural antioxidants sources. Biomedicine & Pharmacotherapy Journal, 11(3). 1501-1511. doi.org/10.13005/bpj/1517
Phan, M. A. T., Wang, J., Tang, J., Lee, Y. Z., & Ng, K. (2013). Evaluation of α-glucosidase inhibition potential
of some flavonoids from Epimedium brevicornum. LWT - Food Science and Technology, 53(2), 492-498. doi: 10.1016/j.lwt.2013.04.002
Proença, C., Freitas, M., Ribeiro, D., Oliveira, E. F. T., Sousa, J. L. C., Tomé, S. M., Ramos, M. J., & Fernandes,
P. A. (2017). Flavonoids as potential therapeutic agents for type 2 diabetes mellitus: A structure–
activity relationship study. Journal of Medicinal Chemistry, 60(19), 8736-8751. doi.org/10.1021/acs.jmedchem.7b00685
Rucksakaew, K., Damsud, T., & Chankaew, W. (2020). Flavonoid effects of water extraction on total
flavonoid content and biological activities between natural and cultured Wolffia globosa (Roxb.)
Hartog & Plas. Princess of Naradhiwas Journal, 12(1). 150-162. (in Thai)
Rucksakaew, K., Damsud, T., & Chankaew, W. (2019). Effects of water extraction on total flavonoid content and biological activities between natural and cultured Wolffia globosa (Roxb.) Hartog & Plas. Princess of Naradhiwas University Journal, 11(2), 150-162.
Sennikova, V. V., Zalaltdinova, A. V., Sadykova, Y. M., Khamatgalimov, A. R., Gazizov, A. S., Voloshina, A. D.,
Lyubina, A. P., Amerhanova, S. K., Voronina, J. K., Chugunova, E. A., Appazov, N. O., Burilov, A. R., &
Pudovik, M. A. (2022). Diastereoselective synthesis of novel spiro-phosphacoumarins and evaluation of their anti-cancer activity. International Journal of Molecular Sciences, 23(22), 14348.
Suriyaphan, O., Tangsathitkulchai, K., Chewchinda, S., Lomarat, P., & Sato, V. H. (2023). Antioxidant activity
and α-glucosidase inhibitory activity of Mesona chinensis aqueous extract. Burapha Science Journal, 28(3), 1766-1782. (in Thai)
Thiantongin, P., Thammaporn, C., & Chaweerak, S. (2020). Alpha-glucosidase inhibitory and antioxidant
activities of Thai herbal recipes for anti-diabetes. Udon Thani Rajabhat University Journal of Science and Technology, 8(1), 1-17. (in Thai)
Wongsa, P., Chaiwarit, J., & Zamaludien, A. (2012). In vitro screening of phenolic compounds, potential
inhibition against α-amylase and α-glucosidase of culinary herbs in Thailand. Food Chemistry, 131(3), 964-971. doi.org/10.1016/j.foodchem.2011.09.088
Yimsaard, P., Lancaster, K. E., & Sohn, A. H. (2023). Potential impact of Thailand's cannabis policy on the
health of young adults: current status and future landscape. The Lancet Regional Health.
Southeast Asia, 10, 100145. doi: 10.1016/j.lansea.2023.100145
Zimmet, P., Alberti, K. G. M. M., & Shaw, J. (2001). Global and societal implications of diabetes
epidemic. Nature, 414(6865), 782-787. doi: 10.1038/414782a