The efficiency of parametric and non-parametric statistics on location testing with multiple population groups
Main Article Content
Abstract
This research aimed to study the efficiency of parametric and non-parametric statistics on location testing with multiple population groups. The statistical techniques applied were one-way ANOVA (F test), the Kruskal-Wallis test (K-W test), and the Van der Waerden normal–scores test for k independent samples (V-W test). The data were simulated by Monte Carlo techniques with program R. The determined conditions were population with normal distribution, negative skewness and platykurtic distribution ( = -0.75, K = 2.80) and positive skewness and leptokurtic distribution ( = 0.75, K = 3.60). Additionally, the sample sizes were 10 (small), 25, 50 (medium) and 100 (large). The sample were divided into 3, 4, and 5 groups with equal/non-equal variance. The hypotheses were tested at significant levels of 0.05 and 0.01. The results showed that the population was normal distribution, the tested statistics showing robustness and having highest power of the test for small sample were F test and K-W test, for medium sample was K-W test, and for large sample were F test, K-W test, and V-W test. When the population was negative skewness and platykurtic distributions, the tested statistics showing robustness and having highest power of the test for small and medium samples was V-W test. For large sample with equal variance, the tested techniques were F test, K-W test, and V-W test. For non-equal variance, the tested technique was F test. Finally, when population was positive skewness and leptokurtic distribution, the tested statistics showing robustness and highest power of the test for small sample were K-W test and V-W test, for medium sample was V-W test, and for large sample with equal variance were F test, K-W test, and V-W test, and with non-equal variance was F test.
Article Details
Published manuscript are the rights of their original owners and RMUTSB Academic Journal. The manuscript content belongs to the authors' idea, it is not the opinion of the journal's committee and not the responsibility of Rajamangala University of Technology Suvarnabhumi
References
มนตรี สังข์ทอง. 2557. หลักสถิติ. ซีเอ็ดยูเคชั่น. กรุงเทพฯ.
มนตรี สังข์ทอง. 2557. ความแกร่งและอำนาจการทดสอบของสถิติอิงพารามิเตอร์และสถิติไม่อิงพารามิเตอร์ในการทดสอบความแตกต่างของค่ากลางระหว่างประชากรสองกลุ่ม สำหรับข้อมูลแบบลิเคิร์ท 5 ระดับ. วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัย
ธรรมศาสตร์ 22(5): 605-619
สุชาดา บวรกิติวงศ์ และ กุณฑีรา อารีกุล. 2560. ความแกร่งของสถิติทดสอบเอฟ เมื่อความแปรปรวนของประชากรไม่เท่ากัน. วารสารวิจัย มสด สาขามนุษยศาสตร์และสังคมศาสตร์ 13(1): 1-16.
Bradley, J.V. 1978. Robustness ?. British Journal of Mathematical and Statistical Psychology 31: 144-152.
Feir, B.J. and L.E. Toothaker. 1974. The ANOVA F-test versus the Kruskal-Wallis test: A robustness study. In: The Annual Meeting of the American Educational Research Association, Chicago.
Game, P.A., H.B. Winkler and D.A. Probert. 1972. Robust tests for homogeneity of variance. Educational and Psychological Measurement 32: 877-909.
Gleason, J.H. 2013. Comparative power of the anova. Approximate randomization anova, and Kruskal-Wallis test. Ph.D Evalution and Research. Wayne State University. Detroit, Michigan.
Guo, J.H. and W.M. Luh. 2008. Approximate sample size formulas for testing group mean difference when variance are unequal in one-way ANOVA. Education and psychological measurement 68: 959-971.
Hecke, T.V. 2012. Power study of anova versus Kruskal-Wallis test. J. Stat. Manage. Syst. 15(2-3): 241-247.
Luepsen, H. 2017. Comparison of nonparametric analysis of variance methods - A vote for van der Waerden. Communications in Statistics - Simulation and Computation. DOI: 10.1080/03610918.2017.1353613.
Ramberg, J.S., E.J. Dudewicz, P.R. Tadikamalla and E.F. Mykytka. 1979. A probability distribution and its uses in fitting data. Technometrics 21: 201-214.
Sheskin, D.J. 2000. Handbook of parametric and nonparametric statistical procedures. 2nd ed. Chapman and Hall/CRC, Boca Raton, FL.