สารออกฤทธิ์ทางชีวภาพจากสาหร่ายขนาดเล็ก

Main Article Content

สุนทรต์ ชูลักษณ์
ปูริดา สุพิทิพย์
วิชุดา จันทร์ข้างแรม

บทคัดย่อ

ในปัจจุบันสาหร่ายขนาดเล็กได้รับความสนใจอย่างมากเพราะเป็นหนึ่งในทรัพยากรธรรมชาติที่อุดมไปด้วยสารออกฤทธิ์ทางชีวภาพที่หลากหลายและมีประโยชน์ต่อสุขภาพ รวมถึงมีความเป็นไปได้ที่จะนำไปประยุกต์ใช้ในเชิงพาณิชย์ทั้งในอุตสาหกรรมยา เครื่องสำอางและอาหาร ด้วยเหตุนี้จึงได้มีการศึกษาวิจัยเกี่ยวกับสารออกฤทธิ์ทางชีวภาพตามธรรมชาติจากสาหร่ายขนาดเล็กกันอย่างแพร่หลาย เพราะสารเหล่านี้มีหน้าที่ทางชีวภาพและประโยชน์อันหลากหลาย ซึ่งได้แก่ ฤทธิ์ต้านอนุมูลอิสระ ต้านไวรัส ต้านแบคทีเรีย ต้านเชื้อรา ต้านการอักเสบและฤทธิ์ต้านมาลาเรีย บทความปริทรรศน์นี้ครอบคลุมถึงลักษณะทั่วไปของสาหร่าย และสารออกฤทธิ์ทางชีวภาพที่พบมากในสาหร่ายขนาดเล็ก ซึ่งได้แก่ สารโพลีฟีนอล กรดไขมันไม่อิ่มตัวเชิงซ้อน รงควัตถุต่างๆ คลอโรฟิลล์ แคโรทีนอยด์ ไฟโคบิลิน และโปรตีน โดยเนื้อหาหลักมุ่งเน้นที่หน้าที่ทางชีวภาพ และการนำไปใช้ประโยชน์กับงานด้านต่างๆ ของสารออกฤทธิ์ทางชีวภาพดังกล่าว

Downloads

Download data is not yet available.

Article Details

บท
บทความวิชาการ

References

Ariede, M. and et al. 2017. Cosmetic attributes of algae - A review. Algal Research. 25: 483-487.

Croce, R. and van Amerongen, H. 2014. Natural strategies for photosynthetic light harvesting. Nature Chemical Biology. 10(7): 492-501.

Wolkers, H. and et al. 2011. Microalgae: the Green Gold of the Future? : Large-Scale Sustainable Cultivation of Microalgae for the Production of Bulk Commodities. Wageningen: Wageningen UR Food & Biobased Research.

Milledge, J. and et al. 2014. Macroalgae-derived biofuel: A review of methods of energy extraction from seaweed biomass. Energies. 7: 7194-7222.

Thiyagarasaiyar, K. and et al. 2020. Algae metabolites in cosmeceutical: An overview of current applications and challenges. Marine Drugs. 18(6): 323.

Morais, M. and et al. 2015. Biologically active metabolites synthesized by microalgae. BioMed Research International. 2015: 835761.

Joshi, S., Kumari, R. and Upasani, V. 2018. Applications of algae in cosmetics: an overview. International Journal of Innovative in Science, Engineering and Technology. 7: 1269-1278.

Diaz-Pulido, G. and McCook, L.J. 2008. Environmental status: macroalgae (seaweeds). In: Chin, A. (ed.) The State of the Great Barrier Reef On-line. Townsville: Great Barrier Reef Marine Park Authority.

Bayu, A. and Handayani, T. 2018. High-value chemicals from marine macroalgae: opportunities and challenges for marine-based bioenergy development. IOP Conference Series: Earth and Environmental Science. 209(1): 012046.

Wang, W.L. and Chiang, Y.M. 2001. The reproductive development of the red alga Actinotrichia fragilis (Galaxauraceae, Nemaliales). European Journal of Phycology. 36(4): 377-383.

Guiry, M.D. and et al. 2014. AlgaeBase: an on-line resource for algae. Cryptogamie Algologie. 35(2): 105-115.

Khan, M.I., Shin, J.H. and Kim, J.D. 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories. 17(1): 36.

Hu, Q. and et al. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal. 54(4): 621-639.

Levasseur, W., Perré, P. and Pozzobon, V. 2020. A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances. 41: 107545.

Tragin, M. and et al. 2016. Diversity and ecology of green microalgae in marine systems: an overview based on 18S rRNA gene sequences. Perspectives in Phycology. 3(3): 141-154

Heimann, K. and Huerlimann, R. 2015. Microalgal classification: Major classes and genera of commercial microalgal species. In: Kim, S.K. (ed.) Handbook of Marine Microalgae: Biotechnology Advances. Boston: Academic Press.

Derwenskus, F. and Holdmann, A. 2016. Microalgae - Underestimated all-rounders. ChemistryViews Magazine. https://www. chemistryviews.org/details/ezine/8639701/Microalgae__Underestimated_All-Rounders.html. Accessed 18 July 2021.

de Morais, M.G. and et al. 2015. Biologically active metabolites synthesized by microalgae. BioMed Research International. 2015: 835761.

Olmos-Soto, J. 2015. Dunaliella identification using DNA fingerprinting intron-sizing method and species-specific oligonucleotides: new insights on Dunaliella molecular identification. In: Kim, S.K. (ed.) Handbook of Marine Microalgae: Biotechnology Advances. Boston: Academic Press.

Aussant, J., Guiheneuf, F. and Stengel, D.B. 2018. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae. Applied Microbiology and Biotechnology. 102(12): 5279-5297.

Preetha, K. and et al. 2012. Phenotypic and genetic characterization of Dunaliella (Chlorophyta) from Indian salinas and their diversity. Aquatic Biosystems. 8(1): 27.

Kale, A. and Karthick, B. 2015. The diatoms: Big significance of tiny glass houses. Resonance. 20: 919-930.

Li, Y. and et al. 2017. Diversity in the globally distributed diatom genus Chaetoceros (Bacillariophyceae): Three new species from warm-temperate waters. PLoS One. 12(1): e0168887.

Stoermer, E.F. and Julius, M.L. 2003. Centric diatoms. In Wehr, J.D. and Sheath, R.G. (eds.) Freshwater Algae of North America. Burlington: Academic Press.

Rines, J.E.B. and Theriot, E.C. 2003. Systematics of Chaetocerotaceae (Bacillariophyceae). I. A phylogenetic analysis of the family. Phycological Research. 51(2): 83-98.

de Jesus Raposo, M.F., de Morais, R.M.S.C. and de Morais, A.M.M.B. 2013. Health applications of bioactive compounds from marine microalgae. Life Sciences. 93(15): 479-486.

Richmond, A. and Hu, Q. 2013. Handbook of Microalgal Culture. Chichester: Wiley-Blackwell.

Barkia, I., Saari, N. and Manning, S. 2019. Microalgae for high-value products towards human health and nutrition. Marine Drugs. 17: 304.

Pandey, K.B. and Rizvi, S.I. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity. 2(5): 270-278.

Freile-Pelegrin, Y. and Robledo, D. 2014. Bioactive phenolic compounds from algae. In: Hernbndez-Ledesma, B. and Herrero, M. (eds.) Bioactive Compounds from Marine Foods: Plant and Animal Sources. Illinois: John Wiley & Sons, Ltd.

Stengel, D. and Connan, S. 2015. Marine algae: A source of biomass for biotechnological applications. Methods in Molecular Biology. 2015(1308): 1-37.

Choi, H., Pereira, A. and Gerwick, W. 2012. The chemistry of marine algae and cyanobacteria. In: Fattorusso, E., Gerwick, W. and Taglialatela-Scafati, O. (eds.) Handbook of Marine Natural Products. Dordrecht: Springer.

Lane, A. and et al. 2009. Antimalarial bromophycolides J−Q from the Fijian red alga Callophycus serratus. Journal of Organic Chemistry. 74: 2736-2742.

Sinha, R.P., Singh, S.P. and Häder, D.P. 2007. Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. Journal of Photochemistry and Photobiology B: Biology. 89(1): 29-35.

Stark, Y., Hsieh, Y. and Suzuki, T. 2003. Distribution of flavonoids and related compounds from seaweeds in Japan. Journal of the Tokyo University of Fisheries. 89: 1-6.

Levasseur, W., Perre, P. and Pozzobon, V. 2020. A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances. 41: 107545.

Spolaore, P. and et al. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering. 101(2): 87-96.

Markou, G. and Nerantzis, E. 2013. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology Advances. 31(8): 1532-1542.

Hamed, I. 2016. The evolution and versatility of microalgal biotechnology: A review. Comprehensive Reviews in Food Science and Food Safety. 15(6): 1104-1123.

Rammuni, M.N. and et al. 2019. Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chemistry. 277: 128-134.

Odjadjare, E.C., Mutanda, T. and Olaniran, A.O. 2017. Potential biotechnological application of microalgae: a critical review. Critical Reviews in Biotechnology. 37(1): 37-52.

Yaakob, Z. and et al. 2014. An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research-Thessaloniki. 21(1): 6.

Croft, H. and Chen, J. 2018. Leaf pigment content. In: Liang, S. (ed.) Comprehensive Remote Sensing. Oxford: Elsevier.

Frank, H.A. and Cogdell, R.J. 2012. Light capture in photosynthesis. Comprehensive Biophysics. 8: 94-114.

Gouveia, L. and et al. 2010. Microalgae – source of natural bioactive molecules as functional ingredients. Food Science & Technology Bulletin: Functional Foods. 7: 21-37.

Ramesh Kumar, B. and et al. 2019. Microalgae as rich source of polyunsaturated fatty acids. Biocatalysis and Agricultural Biotechnology. 17: 583-588.

Mourelle, M.L., Gómez, C.P. and Legido, J.L. 2017. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics. 4(4): 46.

Marventano, S. and et al. 2015. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: Does the ratio really matter? International Journal of Food Sciences and Nutrition. 66: 1-12.

Bernaerts, T.M.M. and et al. 2019. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnology Advances. 37(8): 107419.

Markou, G., Angelidaki, I. and Georgakakis, D. 2012. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology. 96(3): 631-645.

Conde, E. and et al. 2013. Algal proteins, peptides and amino acids. In: Domínguez, H. (ed.) Functional Ingredients from Algae for Foods and Nutraceuticals. Cambridge: Woodhead Publishing.

Khanra, S. and et al. 2018. Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. Food and Bioproducts Processing. 110: 60-84.

Kim, S.K. and Kang, K.H. 2011. Medicinal effects of peptides from marine microalgae. In: Kim, S.K. (ed.) Advances in Food and Nutrition Research. Cambridge: Academic Press.

Bernaerts, T.M.M. and et al. 2019. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnology Advance. 37(8): 107419.

Stolz, P. and Obermayer, B. 2005. Manufacturing microalgae for skin care. Cosmetics and Toiletries. 120: 99-106.

Guzman, F. and et al. 2019. Identification of antimicrobial peptides from the microalgae Tetraselmis suecica (Kylin) Butcher and bactericidal activity improvement. Marine Drugs. 17(8): 453.

Galasso, C. and et al. 2019. Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and Interception. Nutrients. 11(6): 1226.

Tarento, T. D. C. and et al. 2018. Microalgae as a source of vitamin K1. Algal Research. 36: 77-87.

Fernandes, I. 2019. Fatty Acids Polyunsaturated as bioactive compounds of microalgae: contribution to human health. Global Journal of Nutrition & Food Science. 2(1): 2019.

Uthappa, U. T. and et al. 2018. Nature engineered diatom biosilica as drug delivery systems. Journal of Controlled Release. 281: 70-83.

Onen Cinar, S. and et al. 2020. Bioplastic production from microalgae: A review. International Journal of Environmental Research and Public Health. 17(11): 3842.