สารออกฤทธิ์ทางชีวภาพจากสาหร่ายขนาดเล็ก
Main Article Content
บทคัดย่อ
ในปัจจุบันสาหร่ายขนาดเล็กได้รับความสนใจอย่างมากเพราะเป็นหนึ่งในทรัพยากรธรรมชาติที่อุดมไปด้วยสารออกฤทธิ์ทางชีวภาพที่หลากหลายและมีประโยชน์ต่อสุขภาพ รวมถึงมีความเป็นไปได้ที่จะนำไปประยุกต์ใช้ในเชิงพาณิชย์ทั้งในอุตสาหกรรมยา เครื่องสำอางและอาหาร ด้วยเหตุนี้จึงได้มีการศึกษาวิจัยเกี่ยวกับสารออกฤทธิ์ทางชีวภาพตามธรรมชาติจากสาหร่ายขนาดเล็กกันอย่างแพร่หลาย เพราะสารเหล่านี้มีหน้าที่ทางชีวภาพและประโยชน์อันหลากหลาย ซึ่งได้แก่ ฤทธิ์ต้านอนุมูลอิสระ ต้านไวรัส ต้านแบคทีเรีย ต้านเชื้อรา ต้านการอักเสบและฤทธิ์ต้านมาลาเรีย บทความปริทรรศน์นี้ครอบคลุมถึงลักษณะทั่วไปของสาหร่าย และสารออกฤทธิ์ทางชีวภาพที่พบมากในสาหร่ายขนาดเล็ก ซึ่งได้แก่ สารโพลีฟีนอล กรดไขมันไม่อิ่มตัวเชิงซ้อน รงควัตถุต่างๆ คลอโรฟิลล์ แคโรทีนอยด์ ไฟโคบิลิน และโปรตีน โดยเนื้อหาหลักมุ่งเน้นที่หน้าที่ทางชีวภาพ และการนำไปใช้ประโยชน์กับงานด้านต่างๆ ของสารออกฤทธิ์ทางชีวภาพดังกล่าว
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Ariede, M. and et al. 2017. Cosmetic attributes of algae - A review. Algal Research. 25: 483-487.
Croce, R. and van Amerongen, H. 2014. Natural strategies for photosynthetic light harvesting. Nature Chemical Biology. 10(7): 492-501.
Wolkers, H. and et al. 2011. Microalgae: the Green Gold of the Future? : Large-Scale Sustainable Cultivation of Microalgae for the Production of Bulk Commodities. Wageningen: Wageningen UR Food & Biobased Research.
Milledge, J. and et al. 2014. Macroalgae-derived biofuel: A review of methods of energy extraction from seaweed biomass. Energies. 7: 7194-7222.
Thiyagarasaiyar, K. and et al. 2020. Algae metabolites in cosmeceutical: An overview of current applications and challenges. Marine Drugs. 18(6): 323.
Morais, M. and et al. 2015. Biologically active metabolites synthesized by microalgae. BioMed Research International. 2015: 835761.
Joshi, S., Kumari, R. and Upasani, V. 2018. Applications of algae in cosmetics: an overview. International Journal of Innovative in Science, Engineering and Technology. 7: 1269-1278.
Diaz-Pulido, G. and McCook, L.J. 2008. Environmental status: macroalgae (seaweeds). In: Chin, A. (ed.) The State of the Great Barrier Reef On-line. Townsville: Great Barrier Reef Marine Park Authority.
Bayu, A. and Handayani, T. 2018. High-value chemicals from marine macroalgae: opportunities and challenges for marine-based bioenergy development. IOP Conference Series: Earth and Environmental Science. 209(1): 012046.
Wang, W.L. and Chiang, Y.M. 2001. The reproductive development of the red alga Actinotrichia fragilis (Galaxauraceae, Nemaliales). European Journal of Phycology. 36(4): 377-383.
Guiry, M.D. and et al. 2014. AlgaeBase: an on-line resource for algae. Cryptogamie Algologie. 35(2): 105-115.
Khan, M.I., Shin, J.H. and Kim, J.D. 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories. 17(1): 36.
Hu, Q. and et al. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal. 54(4): 621-639.
Levasseur, W., Perré, P. and Pozzobon, V. 2020. A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances. 41: 107545.
Tragin, M. and et al. 2016. Diversity and ecology of green microalgae in marine systems: an overview based on 18S rRNA gene sequences. Perspectives in Phycology. 3(3): 141-154
Heimann, K. and Huerlimann, R. 2015. Microalgal classification: Major classes and genera of commercial microalgal species. In: Kim, S.K. (ed.) Handbook of Marine Microalgae: Biotechnology Advances. Boston: Academic Press.
Derwenskus, F. and Holdmann, A. 2016. Microalgae - Underestimated all-rounders. ChemistryViews Magazine. https://www. chemistryviews.org/details/ezine/8639701/Microalgae__Underestimated_All-Rounders.html. Accessed 18 July 2021.
de Morais, M.G. and et al. 2015. Biologically active metabolites synthesized by microalgae. BioMed Research International. 2015: 835761.
Olmos-Soto, J. 2015. Dunaliella identification using DNA fingerprinting intron-sizing method and species-specific oligonucleotides: new insights on Dunaliella molecular identification. In: Kim, S.K. (ed.) Handbook of Marine Microalgae: Biotechnology Advances. Boston: Academic Press.
Aussant, J., Guiheneuf, F. and Stengel, D.B. 2018. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae. Applied Microbiology and Biotechnology. 102(12): 5279-5297.
Preetha, K. and et al. 2012. Phenotypic and genetic characterization of Dunaliella (Chlorophyta) from Indian salinas and their diversity. Aquatic Biosystems. 8(1): 27.
Kale, A. and Karthick, B. 2015. The diatoms: Big significance of tiny glass houses. Resonance. 20: 919-930.
Li, Y. and et al. 2017. Diversity in the globally distributed diatom genus Chaetoceros (Bacillariophyceae): Three new species from warm-temperate waters. PLoS One. 12(1): e0168887.
Stoermer, E.F. and Julius, M.L. 2003. Centric diatoms. In Wehr, J.D. and Sheath, R.G. (eds.) Freshwater Algae of North America. Burlington: Academic Press.
Rines, J.E.B. and Theriot, E.C. 2003. Systematics of Chaetocerotaceae (Bacillariophyceae). I. A phylogenetic analysis of the family. Phycological Research. 51(2): 83-98.
de Jesus Raposo, M.F., de Morais, R.M.S.C. and de Morais, A.M.M.B. 2013. Health applications of bioactive compounds from marine microalgae. Life Sciences. 93(15): 479-486.
Richmond, A. and Hu, Q. 2013. Handbook of Microalgal Culture. Chichester: Wiley-Blackwell.
Barkia, I., Saari, N. and Manning, S. 2019. Microalgae for high-value products towards human health and nutrition. Marine Drugs. 17: 304.
Pandey, K.B. and Rizvi, S.I. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity. 2(5): 270-278.
Freile-Pelegrin, Y. and Robledo, D. 2014. Bioactive phenolic compounds from algae. In: Hernbndez-Ledesma, B. and Herrero, M. (eds.) Bioactive Compounds from Marine Foods: Plant and Animal Sources. Illinois: John Wiley & Sons, Ltd.
Stengel, D. and Connan, S. 2015. Marine algae: A source of biomass for biotechnological applications. Methods in Molecular Biology. 2015(1308): 1-37.
Choi, H., Pereira, A. and Gerwick, W. 2012. The chemistry of marine algae and cyanobacteria. In: Fattorusso, E., Gerwick, W. and Taglialatela-Scafati, O. (eds.) Handbook of Marine Natural Products. Dordrecht: Springer.
Lane, A. and et al. 2009. Antimalarial bromophycolides J−Q from the Fijian red alga Callophycus serratus. Journal of Organic Chemistry. 74: 2736-2742.
Sinha, R.P., Singh, S.P. and Häder, D.P. 2007. Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. Journal of Photochemistry and Photobiology B: Biology. 89(1): 29-35.
Stark, Y., Hsieh, Y. and Suzuki, T. 2003. Distribution of flavonoids and related compounds from seaweeds in Japan. Journal of the Tokyo University of Fisheries. 89: 1-6.
Levasseur, W., Perre, P. and Pozzobon, V. 2020. A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances. 41: 107545.
Spolaore, P. and et al. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering. 101(2): 87-96.
Markou, G. and Nerantzis, E. 2013. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology Advances. 31(8): 1532-1542.
Hamed, I. 2016. The evolution and versatility of microalgal biotechnology: A review. Comprehensive Reviews in Food Science and Food Safety. 15(6): 1104-1123.
Rammuni, M.N. and et al. 2019. Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chemistry. 277: 128-134.
Odjadjare, E.C., Mutanda, T. and Olaniran, A.O. 2017. Potential biotechnological application of microalgae: a critical review. Critical Reviews in Biotechnology. 37(1): 37-52.
Yaakob, Z. and et al. 2014. An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research-Thessaloniki. 21(1): 6.
Croft, H. and Chen, J. 2018. Leaf pigment content. In: Liang, S. (ed.) Comprehensive Remote Sensing. Oxford: Elsevier.
Frank, H.A. and Cogdell, R.J. 2012. Light capture in photosynthesis. Comprehensive Biophysics. 8: 94-114.
Gouveia, L. and et al. 2010. Microalgae – source of natural bioactive molecules as functional ingredients. Food Science & Technology Bulletin: Functional Foods. 7: 21-37.
Ramesh Kumar, B. and et al. 2019. Microalgae as rich source of polyunsaturated fatty acids. Biocatalysis and Agricultural Biotechnology. 17: 583-588.
Mourelle, M.L., Gómez, C.P. and Legido, J.L. 2017. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics. 4(4): 46.
Marventano, S. and et al. 2015. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: Does the ratio really matter? International Journal of Food Sciences and Nutrition. 66: 1-12.
Bernaerts, T.M.M. and et al. 2019. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnology Advances. 37(8): 107419.
Markou, G., Angelidaki, I. and Georgakakis, D. 2012. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology. 96(3): 631-645.
Conde, E. and et al. 2013. Algal proteins, peptides and amino acids. In: Domínguez, H. (ed.) Functional Ingredients from Algae for Foods and Nutraceuticals. Cambridge: Woodhead Publishing.
Khanra, S. and et al. 2018. Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. Food and Bioproducts Processing. 110: 60-84.
Kim, S.K. and Kang, K.H. 2011. Medicinal effects of peptides from marine microalgae. In: Kim, S.K. (ed.) Advances in Food and Nutrition Research. Cambridge: Academic Press.
Bernaerts, T.M.M. and et al. 2019. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnology Advance. 37(8): 107419.
Stolz, P. and Obermayer, B. 2005. Manufacturing microalgae for skin care. Cosmetics and Toiletries. 120: 99-106.
Guzman, F. and et al. 2019. Identification of antimicrobial peptides from the microalgae Tetraselmis suecica (Kylin) Butcher and bactericidal activity improvement. Marine Drugs. 17(8): 453.
Galasso, C. and et al. 2019. Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and Interception. Nutrients. 11(6): 1226.
Tarento, T. D. C. and et al. 2018. Microalgae as a source of vitamin K1. Algal Research. 36: 77-87.
Fernandes, I. 2019. Fatty Acids Polyunsaturated as bioactive compounds of microalgae: contribution to human health. Global Journal of Nutrition & Food Science. 2(1): 2019.
Uthappa, U. T. and et al. 2018. Nature engineered diatom biosilica as drug delivery systems. Journal of Controlled Release. 281: 70-83.
Onen Cinar, S. and et al. 2020. Bioplastic production from microalgae: A review. International Journal of Environmental Research and Public Health. 17(11): 3842.