Performance Comparison of ARIMA and Machine Learning Regression Techniques in Time Series Forecasting of Bitcoin Prices
Main Article Content
Abstract
At present, Bitcoin is the most popular and traded cryptocurrency, causing its price to fluctuate on a daily basis. Therefore, research to find a suitable method for forecasting the Bitcoin price has attracted attention. ARIMA and machine learning regression techniques are techniques used for forecasting various situations such as gold price and oil price forecasting. ARIMA is a classical technique while machine learning regression techniques are new techniques such as Multilayer perceptron, Radial basis function and Support vector regression. This research aims to compare the performance of ARIMA and machine learning regression techniques in forecasting Bitcoin price. Both techniques were used to create time series forecasting models for daily Bitcoin price. The data used for creating models were the opening price, the highest price, the lowest price, the closing price, the volume and market cap from www.coinmarketcap.com during 1 January 2017 to 31 December 2019. In performance evaluation of the models, sliding window technique was used to separate data into training and testing sets. Furthermore, mean absolute error (MAE) and root mean square error (RMSE) were also used as criteria to compare performance of the models. From the experiments, it was found that ARIMA showed the best performance with the lowest MAE and RMSE for forecasting the opening price, the highest price, the lowest price, the closing price, the volume and market cap.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Crosby, M. and et al. 2016. Blockchain technology: Beyond bitcoin. Applied Innovation Review. 2: 6-19.
Bohme, R. and et al. 2015. Bitcoin: Economics, technology, and governance. Journal of Economic Perspectives. 29(2): 213-238.
Lekkla, S. and Thongkam, J. 2018. Forecasting the trend of foreign exchange rates using time series analysis techniques. Journal of Technology Management Rajabhat Maha Sarakham University. 5(2): 94-103. (in Thai)
Cibikdiken, A.O. and Karakoyun, E.S. 2018. Comparison of arima time series model and lstm deep learning algorithm for bitcoin price forecasting. In: Proceedings of the 13th Multidisciplinary Academic Conference, 12-13 October 2018. Prague, Czech Republic.
Chentawat, R., Kerdprasop, K. and Kerdprasop, N. 2017. The demand forecasting of electrical power distribution units by support vector regression with 3 folds cross-validation. Journal of Science and Technology Ubon Ratchathani University. 19(1): 215-232. (in Thai)
Jordan, M.I. and Mitchell, T.M. 2015. Machine learning: Trends, perspectives, and prospects. Science. 349(6245): 255-260.
Khedmati, M., Seifi, F. and Azizi, M.J. 2020. Time series forecasting of Bitcoin price based on autoregressive integrated moving average and machine learning approaches. International Journal of Engineering. 33(7): 1293-1303.
CoinMarketCap. 2020. CoinMarketCap. https: //coinmarketcap.com. Accessed 31 December 2020.
Bataineh, M. and Marler, T. 2017. Neural network for regression problems with reduced training sets. Neural Networks. 95: 1-9.
Struga, K. and Qirici, O. 2018. Bitcoin price prediction with neural networks. In: Proceedings of the Recent Trends and Applications in Computer Science and Information Technology, 23-24 November 2018. Tirana, Albania.
Carlberg, C. 2016. Regression Analysis Microsoft Excel. Indianapolis, IN: Que Publishing.
Detthamrong, U. and Chansanam, W. 2018. Time series forecasting stock closing prices of listed company using ARIMA model. Journal of Business, Economics and Communications. 13(2): 57-72. (in Thai)
Chaiyadecha, S. 2020. ARIMA model in Python. https://lengyi.medium.com. Accessed 12 April 2020. (in Thai)
Soonthornwiphat, S. 2015. Application of Artificial Neural Network for Biomass Requirement Management. M.Sc. Thesis, Silpakorn University. (in Thai)
Yuk W. and Thongkam, J. 2018. Comparison of time series techniques for predicting gold and oil prices. RMUTI Journal Science and Technology. 11(2): 154-167. (in Thai)
Sanguansat, P. 2019. Artificial Intelligence Machine Learning Python Edition. Nonthaburi: Meb Corporation. (in Thai)
Pimpaporn, W. 2018. The Development of a Predication Model for Academic Achievement of Students During a Learning Process by Using Data mining Techniques. Sripatum Review of Science Technology. 10(1): 7-17. (in Thai)
Thanapala, D., Charoensiri, T. and Soponpimol, C. 2016. Forecasting of Factory Pineapple Prices with Box-Jenkins Method. Burapha Science Journal. 21(1): 110-118. (in Thai)
Munim, Z.H., Shakil, M.H. and Alon, I. 2019. Next-day bitcoin price forecast. Journal of Risk and Financial Management. 12(2): 103.