ไบโอชาร์ (วัสดุมหัศจรรย์) : การสังเคราะห์ พิสูจน์เอกลักษณ์ และศักยภาพการประยุกต์ใช้งาน

Main Article Content

กรกนก โกศล
ศศิธร ศรีอ่อน
พรรณพรรธน์ จำปาแพง
สายันต์ แสงสุวรรณ

บทคัดย่อ

ไบโอชาร์ที่ผลิตจากสารชีวมวลเป็นไบโอชาร์ที่อุดมไปด้วยคาร์บอน การผลิตไบโอชาร์จากสารชีวมวลอาศัยกระบวนการไพโรไลซิส ซึ่งเป็นกระบวนการเผาไหม้ด้วยความร้อนโดยไม่ใช้ออกซิเจน หรือในสภาวะจำกัดออกซิเจน ไบโอชาร์มักถูกใช้เพื่อลดปัญหาสิ่งแวดล้อมด้านต่าง ๆ เช่น ช่วยลดปริมาณแก๊สคาร์บอนไดออกไซด์ในชั้นบรรยากาศได้โดยกักเก็บคาร์บอนในดิน และใช้เพื่อปรับปรุงดินสำหรับ  ทำการเกษตรเนื่องจากถ่านคาร์บอนมีพื้นที่ผิวสูงและมีปริมาณรูพรุนสูง จึงสามารถช่วยกักเก็บน้ำและธาตุอาหารในดินให้กับพืชได้เป็นอย่างดี นอกจากนี้ไบโอชาร์ยังสามารถแก้ปัญหามลภาวะทางน้ำได้ด้วย โดยการดูดซับสารหรือโลหะหนักเอาไว้ในโครงสร้างและรูพรุนของไบโอชาร์ เนื่องจากไบโอชาร์มีประโยชน์ใช้งานที่หลากหลายและมีต้นทุนในการผลิตต่ำ จึงทำให้ไบโอชาร์เป็นวัสดุที่น่าสนใจในการนำไปศึกษาวิจัยต่อยอดเพื่อพัฒนาเป็นผลิตภัณฑ์ที่สามารถนำไปประยุกต์ใช้ในด้านอื่น ๆ ได้อีกมากมาย บทความนี้นำเสนอวิธีการเตรียม การพิสูจน์เอกลักษณ์ และการประยุกต์ใช้ไบโอชาร์ทั้งในปัจจุบันและในอนาคต

Article Details

บท
บทความวิชาการ

References

Renella, G., Landi, L. and Nannipieri, P. 2004. Degradation of low molecular weight organic acids complexed with heavy metals in soil. Geoderma. 22(2-4): 311-315.

Tang, X. and et al. 2010. Heavy metal and persistent organic compound contamination in soil from Wenling: An emerging e-waste recycling city in Taizhou area, China. Journal of Hazardous Materials. 173(1-3): 653-660.

Ding, Y. and et al. 2016. Biochar to improve soil fertility. A review. Agronomy for Sustainable Development. 36: 36.

Rawat, J., Sexena, J. and Sanwal, P. 2018. Biochar: A sustainable approach for improving plant growth and soil properties In: Abrol, V. and Sharma, P. (eds.) Biochar - An Imperative Amendment for Soil and the Environment, London: IntechOpen.

Chen, Y. and et al. 2017. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresource Technology. 246: 101-109.

Yaashikaaa, P.R. and et al. 2020. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnoogy Reports. 28: e00570.

Cantrell, K.B. and et al. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology. 107: 419-428.

Wei, J. and et al. 2019. Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar. Environmetal Pollution. 251: 56-65.

Tripathi, M., Sahu, J. N. and Ganesan, P. 2015. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Review. 55: 467-481.

Chen, B., Chen, Z. and Lv, S. 2011. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology. 102(2): 716-723.

Lu, G.Q. and et al. 1995. Surface area development of sewage sludge during pyrolysis. Fuel. 74(3): 344-348.

You, S. and et al. 2018. Towards practical application of gasification: a critical review from syngas and biochar perspectives. Critical Reviews in Environmental Science and Technology. 48(22-24): 1165-1213.

Wang, J. and Wang, S. 2019. Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production. 227: 1002-1022.

Brewer, C.E. and et al. 2014. New approaches to measuring biochar density and porosity. Biomass and Bioenergy. 66: 176-185.

Li, H. and et al. 2017. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere. 178: 466-478.

Wang, B. and et al. 2021. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer. Science of the Total Environment. 758: 143664.

Kim, K.H. and et al. 2012. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technology. 118: 158-162.

Dhar, S.A., Sakib, T.U. and Hilary, L.N. 2022. Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process. Biomass Conversion and Biorefinery. 12: 2631-2647.

Usman, A.R.A. and et al. 2015. Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. Journal of Analytical and Applied Pyrolysis. 115: 392-400.

Yao, Y. and et al. 2014. Characterization and environmental applications of clay-biochar composites. Chemical Engineering Journal. 242: 136-143.

Mondal, S. and et al. 2016. Biosorptive uptake of ibuprofen by steam activated biochar derived from mung bean husk: Equilibrium, kinetics, thermodynamics, modeling and eco-toxicological studies. Journal of Environmental Management. 182: 581-594.

Wiedemeier, D.B. and et al. 2014. Aromaticity and degree of aromatic condensation of char. Organic Geochemistry. 78: 135-143.

Synchrotron Light Research Institute. 2018. BEAMLINE 5.3: XPS X-Ray Photoemission spectroscopy. https://www.slri.or.th/th/bl5-3-xps.html. Accessed 22 August 2022. (in Thai)

Leng, L. and et al. 2019. Biochar stability assessment methods: A review. Science of the Total Environment. 647: 210-222.

Cross, A. and Sohi, S.P. 2013. A method for screening the relative long-term stability of biochar. GCB Bioenergy. 5(2): 215-220.

Hemavathy, R.V. and et al. 2020. Adsorptive separation of Cu(II) ions from aqueous medium using thermally/chemically treated Cassia fistula based biochar. Journal of Cleaner Production. 249: 119390.

Yaashikaa, P.R. and et al. 2019. Modelling on the removal of Cr(VI) ions from aquatic system using mixed biosorbent (Pseudomonas stutzeri and acid treated Banyan tree bark). Journal of Molecular Liquids. 276: 362-370.

Karukstis, K.K. and et al. 1988. Quenching of chlorophyll fluorescence by substituted anthraquinones. Biochimica et Biophysica Acta - Bioenergetics. 932: 84-90.

Derrouiche, S. and et al. 2013. Process design for wastewater treatment: Catalytic ozonation of organic pollutants. Water Science and Technology. 68(6): 1377-1383.

Lee, J., Kim, K.-H. and Kwon, E. E. 2017. Biochar as a Catalyst. Renewable and Sustainable Energy Reviews. 77: 70-79.

Deng, Y., Zhang, T. and Wang, Q. 2017. Biochar adsorption treatment for typical pollutants removal in livestock wastewater: a review. In: Huang, W.J. (ed.) Engineering Application of Biochar, London: IntechOpen.

Mendez, A. and et al. 2012. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere. 89(11): 1354-1359.

Puga, A.P. and et al. 2015. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management. 159: 86-93.

Yu, X.Y., Ying, G.G. and Kookana, R.S. 2009. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere. 76(5): 665-671.

Gwenzi, W. and et al. 2018. Synthesis and nutrient release patterns of a biochar-based N–P–K slow-release fertilizer. International Journal of Environment Science and Technology. 15(2): 405-414.

Chen, S. and et al. 2018. Preparation and characterization of slow-release fertilizer encapsulated by biochar-based waterborne copolymers. Science of Total Environment. 615: 431-437.

Wang, S. and et al. 2022. Application of Biochar for Wastewater Treatment. In: Kapoor, R.T., Treichel, H. and Shah, M.P. (eds.) Biochar and its Application in Bioremediation, Singapore: Springer Nature Singapore.

Tomczyk, A., Sokołowska, Z. and Boguta, P. 2020. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology. 19: 191-215.

Wang, C. and et al. 2022. Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environmental Science and Ecotechnology. 10: 100167.

Ahmad, M. and et al. 2012. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology. 118: 536-544.

Kumuduni, N. and et al. 2022. Prediction of soil heavy metal immobilization by biochar using machine learning. Environmental Science & Technology. 56 (7): 4187-4198.

Zheng, W. and et al. 2010. Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials. 181(1-3): 121-126.

Gamiz, B. and et al. 2017. Biochar soil additions affect herbicide fate: Importance of application timing and feedstock species. Journal of Agricultural Food Chemistry. 65(15): 3109-3117.

Cederlund, H., Borjesson, E. and Stenstrom, J. 2017. Effects of a wood-based biochar on the leaching of pesticides chlorpyrifos, diuron, glyphosate and MCPA. Journal of Environmental Management. 191: 28-34.

Di Dong, C., Chen, C.W. and Hung, C.M. 2017. Synthesis of magnetic biochar from bamboo biomass to activate persulfate for the removal of polycyclic aromatic hydrocarbons in marine sediments. Bioresource Technology. 245: 188-195.

Tan X. and et al. 2015. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere. 125: 70-85.

Lyu, H., Zhang, Q. and Shen, B. 2020. Application of biochar and its composites in catalysis. Chemosphere. 240: 124842.

Verheijen, F. and et al. 2010. Biochar Application to Soils - A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. Luxembourg: European Commission.

Schmidt, H.P. and et al. 2014. Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agriculture, Ecosystems & Environment. 191: 117-123.

Butnan, S. and Vityakon, P. 2018. Amazing biochar and its bipolar effects. Khon Kaen Agriculture Journal. 46(6): 1167-1176. (in Thai)

Kamprath, E.J. 1971. Potential detrimental effects from liming highly weathered soils to neutrality. Soil and Crop Science Society of Florida. 31: 200-203.

Mengel, K. and Kirkby, E.A. 2001. Principles of Plant Nutrition. 5th edition. Dordrecht: Kluwer Academic Publishers.

Lampang13 News Online. 2020. Siam Cement Group (Lumpang) Buys Agricultural Scraps to Solve the Problem of Smoke and to Reduce Pollution from Open Burning. http://www.lampang13.com/archives/21191. Accessed 25 August 2022.

Acros Organics. 2020. Chemical Price. https://www.acros.com/DesktopModules/Acros_Search_Results/Acros_Search_Results.aspxsearch_type=CatalogSearch&SearchString=Acrylamide. Accessed 26 August 2022.