Inhibition of Pythium aphanidermatum Causing Rhizome Rot in Ginger by Antagonistic Bacteria
Main Article Content
Abstract
Rhizome rot caused by pathogenic fungi adversely affects ginger yield. The use of biocontrol microorganisms to prevent and control this disease is an interesting and environment-friendly method. This research aimed to isolate pathogenic fungi causing rhizome rot in ginger and to screen bacteria capable of inhibiting the most virulent pathogenic fungus from the isolated fungi. In this study, 5 isolates of rhizome rot causing fungi, ZP1, ZP2, ZP3, ZP4 and ZP5, were isolated from the diseased parts of ginger. From the pathogenicity test in ginger, it was found that the most virulent pathogenic fungus was the isolate ZP4. By using morphological and molecular methods, the fungus isolate ZP4 was identified as Pythium aphanidermatum. From the screening of antagonistic bacteria from soil surrounding ginger plants, it was found that out of 73 selected bacterial isolates, only 11 isolates showed antifungal activity against P. aphanidermatum ZP4 by the dual culture technique among which 5 isolates produced bacteriocin to inhibit P. aphanidermatum ZP4. The antagonistic bacteria exhibited the highest activity against the fungal pathogen P. aphanidermatum ZP4 were the isolates CP-8f and CP-13e which were identified by 16S rDNA sequence analysis as Bacillus velezensis and Bacillus subtilis, respectively. Furthermore, both of them were found to produce proteinase, α-amylase, cellulase and pectinase. These findings indicated that Bacillus velezensis CP-8f and Bacillus subtilis CP-13e had potential to be safe and environment-friendly biological control agents against rhizome rot causing fungi.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Mao, Q.Q. and et al. 2019. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. 8(6): 185.
John, J., Mallikarjunaswamy, G.E. and Noushad, N. 2021. Probiotic rhizospheric Bacillus sp. from Zingiber officinale Rosc. Displays antifungal activity against soft rot pathogen Pythium sp. Current Plant Biology. 27(1): 100217.
Bureau of Agricultural Commodities Promotion and Management. 2021. Ginger, Annual Report 2021, Vegetable and Mushroom Promotion Group. http://www.agriman.doae. go.th/home/news/2564/26ginger.pdf. Accessed 9 September 2021. (in Thai).
Rai, M. and et al. 2018. Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: Emerging role of nanotechnology. Applied Microbiology and Biotechnology. 102(1): 6827-6839.
Bamon, M. and et al. 2018. In vitro efficacy of bacterial endophytes against Pythium sp. causing soft rot of ginger in Meghalaya. International Journal of Current Microbiology and Applied Sciences. 7(8): 367-374.
Behera, S. and et al. 2020. Pythium soft rot management in ginger (Zingiber officinale Roscoe) - A review. Current Journal of Applied Science and Technology. 39(35): 106-115.
Daly, P. and et al. 2022. Genome of Pythium myriotylum uncovers an extensive arsenal of virulence-related genes among the broad-host-range necrotrophic Pythium plant pathogens. Microbiology Spectrum. 10(4): 1-26.
Cui, W. and et al. 2019. Biocontrol of soft rot of Chinese cabbage using an endophytic bacterial strain. Frontiers in Microbiology. 10: 1471.
Goswami, D. and Syiem, M.B. 2021. Biocontrol of Pythium aphanidermatum causing soft rot in ginger with biosurfactant produced by a rhizospheric Bacillus species. Journal of Spices and Aromatic Crops. 30(1): 69-80.
Jinal, N.H. and Amaresan, N. 2020. Evaluation of biocontrol Bacillus species on plant growth promotion and systemic-induced resistant potential against bacterial and fungal wilt-causing pathogens. Archives of Microbiology. 202: 1785-1794.
Myo, E.M. and et al. 2019. Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biological Control. 134: 23-31.
Xie, Z. and et al. 2021. Biocontrol efficacy of Bacillus siamensis LZ88 against brown spot disease of tobacco caused by Alternaria alternata. Biological Control. 154: 104508.
Tran, N.T. and et al. 2019. Phyllosticta capitalensis and P. paracapitalensis are endophytic fungi that show potential to inhibit pathogenic P. citricarpa on citrus. Australasian Plant Pathology. 48: 281-296.
Huzar-Novakowiski, J. and Dorrance. A.E. 2018. Genetic diversity and population structure of Pythium irregulare from soybean and corn production fields in Ohio. Plant Disease. 102: 1989-2000.
Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 33(1): 1870-1874.
Chandramohan, M. and et al. 2019. Production, characterization and optimization of fibrinolytic protease from Bacillus pseudomycoides strain MA02 isolated from poultry slaughter house soils. Biocatalysis and Agricultural Biotechnology. 22: 101371.
Ahmed, S.A. and et al. 2019. Application of one-factor-at-a-time and statistical designs to enhance α-amylase production by a newly isolate Bacillus subtilis strain-MK1. Biocatalysis and Agricultural Biotechnology. 22: 101397.
Ma, L. and et al. 2020. Screening of cellulolytic bacteria from rotten wood of Qinling (China) for biomass degradation and cloning of cellulases from Bacillus methylotrophicus. BMC Biotechnology. 20: 2.
Guo, F. and et al. 2019. Optimizing culture conditions by statistical approach to enhance production of pectinase from Bacillus sp. Y1. BioMed Research International. 2019: 8146948.
Kim, O. and et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology. 62: 716-721.
Fira, D. and et al. 2018. Biological control of plant pathogens by Bacillus species. Journal of Biotechnology. 285: 44-55.