การเสริมฤทธิ์ต้านแบคทีเรียของน้ำมันหอมระเหยกับน้ำผึ้งในการยับยั้ง Escherichia coli O157:H7
Main Article Content
บทคัดย่อ
Escherichia coli O157:H7 เป็นแบคทีเรียก่อโรคในระบบทางเดินอาหาร ก่อให้เกิดอาการฮีโมไลติกยูรีมิก สามารถติดต่อสู่คนโดยการกินอาหารที่มีเชื้อปนเปื้อน ปัจจุบันอุตสาหกรรมอาหารมีความพยายามค้นหาสารกันเสียทางชีวภาพที่ปลอดภัย เช่น น้ำมันหอมระเหย และน้ำผึ้งเพื่อทดแทนสารกันเสียที่เป็นสารเคมีชนิดสังเคราะห์ งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาผลของการใช้น้ำมันหอมระเหย และน้ำผึ้งร่วมกันในการยับยั้ง E. coli O157:H7 ผลการศึกษาพบว่าค่าความเข้มข้นต่ำสุดที่ยับยั้งเชื้อแบคทีเรียได้ (MICs) ของน้ำมันหอมระเหย 5 ชนิด ได้แก่ น้ำมันหอมระเหยตะไคร้ โป๊ยกั๊ก ใบโหระพา พลู และใบมะกรูด อยู่ระหว่าง 1.562-3.125 ไมโครลิตรต่อมิลลิลิตร ส่วนค่า MICs ของน้ำผึ้ง 5 ชนิด ได้แก่ น้ำผึ้งดอกลำไย น้ำผึ้งดอกทานตะวัน น้ำผึ้งดอกลิ้นจี่ น้ำผึ้งดอกกาแฟ และน้ำผึ้งมานูก้า อยู่ระหว่าง 6.25-25% (v/v) การประเมินการเสริมฤทธิ์ต้านแบคทีเรียของน้ำมันหอมระเหยกับน้ำผึ้งใช้วิธี checkerboard microbroth dilution และวิเคราะห์ผลด้วยค่าดัชนีชี้วัดประสิทธิภาพร่วม (FICI) ซึ่งพบว่าการใช้น้ำมันหอมระเหยใบโหระพาร่วมกับน้ำผึ้งดอกกาแฟ หรือน้ำผึ้งมานูก้าแสดงฤทธิ์เสริมกัน โดยมีค่า FICI เท่ากับ 0.5 นอกจากนี้การใช้น้ำมันหอมระเหยตะไคร้ หรือน้ำมันหอมระเหยใบมะกรูดร่วมกับน้ำผึ้งชนิดใดชนิดหนึ่งมีแนวโน้มเสริมฤทธิ์กัน โดยมีค่า FICI อยู่ระหว่าง 0.75-1.00 ดังนั้นการใช้น้ำมันหอมระเหยร่วมกับน้ำผึ้งอาจเป็นทางเลือกใหม่ในการใช้เป็นสารกันเสียทางชีวภาพเพื่อควบคุม E. coli O157:H7 ในอาหารได้
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Smith, J.L. and Fratamico, P.M. 2016. Escherichia coli and other Enterobacteriaceae: Food poisoning and health effects. Encyclopedia of Food and Health. 2016: 539-544.
Buzby, J.C. and Roberts, T. 2009. The economics of enteric infections: human foodborne disease costs. Gastroenterology. 136(6): 1851-1862.
Mengistu, S., Abayneh, E. and Shiferaw, D. 2017. E. coli O157:H7 and Salmonella species: Public health importance and microbial safety in beef at selected slaughter houses and retail shops in eastern Ethiopia. Journal of Veterinary Science and Technology. 8(5): 1-8.
Hugo, C.J. and Hugo, A. 2015. Current trends in natural preservatives for fresh sausage products. Trends in Food Science & Technology. 45(1): 12-23.
Crowe, W., Elliott, C.T. and Green, B.D. 2019. A review of the in vivo evidence investigating the role of nitrite exposure from processed meat consumption in the development of colorectal cancer. Nutrients. 11(11): 1-17.
Chouhan, S., Kanika, S. and Sanjay, G. 2017. Review: Antimicrobial activity of some essential oils-present status and future perspectives. Medicines. 4(3): 1-21.
Maurya, A. and et al. 2021. Essential oils and their application in food safety. Frontiers in Sustainable Food Systems. 5: 1-25.
Burt, S. 2004. Essential oils: Their antibacterial properties and potential applications in foods – A review. International Journal of Food Microbiology. 94(3): 223-253.
Prakash, B. and et al. 2018. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control. 89: 1-11.
Majtan, J. and et al. 2021. Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food. Trends in Food Science & Technology. 118: 870-886.
Bellik, Y. and Iguer-ouada, M. 2014. Honey in the food industry. Boca Raton: CRC press.
Yucel, B. and et al. 2005. Effect of honey treatment on some quality characteristics of broiler breast meat. Journal of Applied Animal Research. 28(1): 53-56.
Ayoob, M. and et al. 2023. Antimicrobial and antioxidative effects of honey marination on beef meat. Pakistan Journal of Zoology. 55(3): 1409-1416.
Hakim, D.A., Tjahjaningsih, W. and Sudarno. 2019. Antibacterial activity of honey in preserving high-pressure cooked milkfish stored at room temperature. In: Proceeding of the 1st International Conference on Fisheries and Marine Science, 6 October 2018. Surabaya, Indonesia.
Iqbal, M.N. 2015. Assessment of microbial load of un-pasteurized fruit juices and in vitro antibacterial potential of honey against bacterial isolates. The Open Microbiology Journal. 9: 26-32.
Imtara, H., Elamine, Y. and Lyoussi, B. 2018. Honey antibacterial effect boosting using Origanum Vulgare L. essential oil. Evidence-Based Complementary and Alternative Medicine. 2018: 7842583.
Khalil, A.T. and et al. 2013. Synergistic antibacterial effect of honey and Herba Ocimi Basilici against some bacterial pathogens. Journal of Traditional Chinese Medicine. 33(6): 810-814.
Abdellah, F. and et al. 2012. Synergistic effect of honey and Thymus ciliatus against pathogenic bacteria. The Open Nutraceuticals Journal. 5: 174-178.
Rahman, M. and et al. 2004. Evaluation of a scanner-assisted colorimetric MIC method for susceptibility testing of gram-negative fermentative bacteria. Applied and Environmental Microbiology. 7(4): 2398-2403.
Collee, J.G. and et al. 1996. Practical Medical Microbiology. New York: Churchill Livingstone.
Amor, G. and et al. 2021. Basil essential oil: Composition, antimicrobial properties, and microencapsulation to produce active chitosan films for food packaging. Foods. 10(1): 1-16.
Thompson, A. and et al. 2013. Comparison of the antibacterial activity of essential oils and extracts of medicinal and culinary herbs to investigate potential new treatments for irritable bowel syndrome. BMC Complementary and Alternative Medicine. 13: 338.
Tan, L.T.H. and et al. 2015. Traditional uses, phytochemistry, and bioactivities of Cananga odorata (ylang-ylang). Evidence-Based Complementary and Alternative Medicine. 2015: 896314.
Biswas, B. and et al. 2013. Antimicrobial activities of leaf extracts of guava (Psidium guajava L.) on two gram-negative and gram-positive bacteria. International Journal of Microbiology. 2013: 746165.
Atares, L. and Chiralt, A. 2016. Review: Essential oil as additives in biodegradable films and coating for active food packaging. Trends in Food Science and Technology. 48: 51-62.
Moghaddam, A.M.D. and et al. 2011. Antimicrobial activity of essential oil extract of Ocimum basilicum L. leaves on a variety of pathogenic bacteria. Journal of Medicinal Plants Research. 5(15): 3453-3456.
Semeniuc, C.A., Pop, C.R. and Rotar, A.M. 2017. Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. Journal of Food and Drug Analysis. 25(2): 403-408.
Tangpao, T., Chung, H. and Sommano, S.R. 2018. Aromatic profiles of essential oils from five commonly used Thai basils. Foods. 7(11): 175.
Kumar, A. and et al. 2008. Antimicrobial activity and chemical composition of Melaleuca genistifolia leaf essential oil from the northern plains of India. Natural Product Communications. 3(10): 1741-1744.
Lopez, M.K.N., Hadisurya, M. and Cornwall, R.G. 2019. Antimicrobial investigation and structure activity analysis of natural eugenol derivatives against several oral bacteria. Journal of Pharmaceutical Microbiology. 5(1): 1-4.
Joshi, A. and et al. 2021. Methyl eugenol, 1,8-cineole and nerolidol rich essential oils with their biological activities from three Melaleuca species growing in Tarai region of north India. Brazilian Archives of Biology and Technology. 64: e21210186.
Bai, X. and et al. 2022. Antibacterial effect of eugenol on Shigella flexneri and its mechanism. Foods. 11: 2565.
Stefan, M. and et al. 2013. The composition and antibacterial activity of essential oils in three Ocimum species growing in Romania. Central European Journal of Biology. 8(6): 600-608.
Ahmed, A.F. and et al. 2019. Antioxidant activity and total phenolic content of essential oils and extracts of Sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness. 8(3): 299-305.
Van de Vel, E., Sampers, I. and Raes, K. 2019. A review on influencing factors on the minimum inhibitory concentration of essential oils. Critical Reviews in Food Science and Nutrition. 59(3): 357-378.
Swamy, M.K., Akhtar, M.S. and Sinniah, U.R. 2016. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-Based Complementary and Alternative Medicine. 2016: 3012462.
Pham, T.N. and et al. 2022. Phenolic profiles, antioxidant, antibacterial activities and nutritional value of Vietnamese honey from different botanical and geographical sources. AgriEngineering. 4(4): 1116-1138.
Chanchao, C., Sintara, K. and Wongsiri, S. 2006. Comparison of antibiotic and organoleptic property of honey from various plant sources in Thailand. Journal of Apicultural Science. 50(2): 59-64.
El-Toum, S.K. and Yagoub, S.O. 2007. Compression study of anti-microbial activity of honey-bees. Research Journal of Microbiology. 2(10): 776-781.
Awan, U.A., Ali, S. and Andleeb, S. 2014. A comparative study of antibacterial and antioxidant activities of wild honey (sunflower and eucalyptus) and commercial honey. Journal of Pharmaceutical Sciences and Pharmacology. 1(3): 211-218.
Jantakee, K. and Tragoolpua, Y. 2015. Activities of different types of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals. Biological research. 48(1): 4.
Alnaimat, S., Wainwright, M. and Al’Abri, K. 2012. Antibacterial potential of honey from different origins: a comparison with manuka honey. Journal of Microbiology, Biotechnology and Food Sciences. 1(5): 1328-1338.
Kim, S.Y. and Kang, S.S. 2020. Anti-biofilm activities of manuka honey against Escherichia coli O157: H7. Food Science of Animal Resources. 40(4): 668-674.
Bouzo, D. and et al. 2020. Characterizing the mechanism of action of an ancient antimicrobial, manuka honey, against Pseudomonas aeruginosa using modern transcriptomics. mSystems. 5(3): 106-120.
Al-Sayaghi, A.M. and et al. 2022. Antibacterial mechanism of action of two types of honey against Escherichia coli through interfering with bacterial membrane permeability, inhibiting proteins, and inducing bacterial DNA damage. Antibiotics. 11(9): 1182.
Lin, S.M., Molan, P.C. and Cursons, R. 2011. The controlled in vitro susceptibility of gastrointestinal pathogens to the antibacterial effect of manuka honey. European Journal of Clinical Microbiology & Infectious Diseases. 30(4): 569-574.
Sherlock, O. and et al. 2010. Comparison of the antimicrobial activity of Ulmo honey from Chile and manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC Complementary and Alternative Medicine. 10: 47.
Nolan, V.C. and et al. 2020. Clinical Significance of manuka and medical-grade honey for antibiotic-resistant infections: A systematic review. Antibiotics. 9(11): 766.
Girma, A., Seo, W. and She, R.C. 2019. Antibacterial activity of varying UMF-graded manuka honeys. PLoS One. 14(10): e0224495.
Green, K. and et al. 2022. Correlation of the antibacterial activity of commercial manuka and Leptospermum honeys from Australia and New Zealand with methylglyoxal content and other physicochemical characteristics. PLoS One. 17(7): e0272376.
Ganjewala, D. and et al. 2014. Antibacterial properties of lemongrass (Cymbopogon flexuosus Steud) wats essential oils in single form and combination of honey against drug resistant pathogenic bacteria. Journal of Biologically Active Products from Nature. 4(4): 278-285.
Khalil, A.T. and et al. 2013. Synergistic antibacterial effect of honey and Herba Ocimi Basilici against some bacterial pathogens. Journal of traditional Chinese medicine. 33(6): 810-814.