Development of an electrochemical sensor based on hemin modified screen-printed carbon electrode for the determination of artemisinin
Main Article Content
Abstract
An electrochemical sensor for the determination of artemisinin (ARN) using hemin modified screen-printed carbon electrode (SPE) has been developed. Hemin can induce the electro-catalytic reduction of artemisinin. The modified electrode was characterized by physical and electrochemical techniques such as scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The calibration graph obtained from Hemin/SPE for the detection of artemisinin was over the range from 5.6 μM to 0.1 mM with a detection and quantitation limit of 1.4 μM (S/N = 3) and 4.5 μM (S/N =10). Moreover, the proposed sensor showed good repeatability and reproducibility at 1.6 and 4.4 %RSD, respectively. The application for real drug and plant samples were obtained the average recovery percentage in the range of 98.7 – 106.8% and the results agreed with HPLC reference technique. These indicated that the proposed electrochemical sensor could be applied for detection of artemisinin in real samples with good precision and accuracy, cheap and reliability.
Article Details
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
[2] World Health Organization. 2018. World malaria report 2018. https://www.who.int/malaria/publications/world-malaria-report-2018/report. Accessed 22 November 2018.
[3] Van Agtmael, M. A and et al. 1999. “Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication”. Trends in pharmacological sciences. 20 (5): 199-205.
[4] Thapliyal, N. and et al. 2016. “Research progress in electroanalytical techniques for determination of antimalarial drugs in pharmaceutical and biological samples”. RSC Advances. 6 (62): 57580-57602.
[5] Bjorkman Nyqvist, M., Svensson, J. and Yanagizawa-Drott, D. 2012. “Can Good Products Drive Out Bad? Evidence from Local Markets for (Fake?) Antimalarial Medicine in Uganda”.
[6] Gabriels, M. and Plaizier-Vercammen, J. 2004. “Development of a reversed-phase thin-layer chromatographic method for artemisinin and its derivatives”. Journal of chromatographic science. 42 (7): 341-347.
[7] Erdemoglu, N. and et al. 2007. “Determination of artemisinin in selected Artemisia L. species of Turkey by reversed phase HPLC”. Records of Natural Products. 1 (2-3): 36.
[8] Liu, S. and et al. 2008. “Affordable and sensitive determination of artemisinin in Artemisia annua L. by gas chromatography with electron-capture detection”. Journal of Chromatography A. 1190 (1-2): 302-306.
[9] Bandodkar, A. J. and Wang, J. 2014. “Non-invasive wearable electrochemical sensors: a review”. Trends in biotechnology. 32 (7): 363-371.
[10] Zhang, C. and et al. 2019. “Sandwich-type electrochemical immunosensor for sensitive detection of CEA based on the enhanced effects of Ag NPs@CS spaced Hemin/rGO”. Biosensors and Bioelectronics. 126: 785-791.
[11] Ye, J.-S. and et al. 2004. “Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution”. Journal of Electroanalytical Chemistry. 562 (2): 241-246.
[12] Brusova, Z. and Magner, E. 2009. “Kinetics of oxidation of hydrogen peroxide at hemin-modified electrodes in nonaqueous solvents”. Bioelectrochemistry. 76 (1-2): 63-69.
[13] Mimica, D., Zagal, J. H. and Bedioui, F. 2001. “Electroreduction of nitrite by hemin, myoglobin and hemoglobin in surfactant films”. Journal of Electroanalytical Chemistry. 497 (1-2): 106-113.
[14] Ma, Q. and et al. 2010. “Towards the conception of an amperometric sensor of l-tyrosine based on Hemin/PAMAM/MWCNT modified glassy carbon electrode”. Electrochimica Acta. 55 (22): 6687-6694.
[15] Shukla, K. L., Gund, T. M. and Meshnick, S. R. 1995. “Molecular modeling studies of the artemisinin (qinghaosu)-hemin interaction: docking between the antimalarial agent and its putative receptor”. Journal of molecular graphics. 13 (4): 215-222.
[16] Reys, J. R. M. and et al. 2008. “An amperometric sensor based on hemin adsorbed on silica gel modified with titanium oxide for electrocatalytic reduction and quantification of artemisinin”. Talanta. 77(2): 909-914.
[17] Yang, X. and et al. 2014. “An electrochemical immunosensor for rapid determination of clenbuterol by using magnetic nanocomposites to modify screen printed carbon electrode based on competitive immunoassay mode”. Sensors and Actuators B: Chemical. 192: 529-535.
[18] Cheng, L., Yan, K. and Zhang, J. 2016. “Integration of graphene-hemin hybrid materials in an electroenzymatic system for degradation of diclofenac”. Electrochimica Acta. 190: 80-987.
[19] Ni, Y. and et al. 2014. “Electrochemical detection of benzo (a) pyrene and related DNA damage using DNA/hemin/nafion–graphene biosensor”. Analytica chimica acta. 821: 34-40.
[20] Chen, Y. and et al. 1999. “Evidence for hemin inducing the cleavage of peroxide bond of artemisinin (Qinghaosu): cyclic voltammetry and in situ FT IR spectroelectrochemical studies on the reduction mechanism of artemisinin in the presence of hemin”. Electrochimica Acta. 44 (14): 2345-2350.