Graphene (The miracle material) : Strategies for Synthesis, Properties, Development, Characterizations and Applications
Main Article Content
Abstract
Graphene (The miracle material) : Strategies for Synthesis, Properties, Development, Characterizations and Applications. Graphene is a crystalline allotrope of carbon with 2-dimensional properties discovered by Prof. Dr. Andre Geim and Prof. Dr. Kostya Novoselov of the University of Manchester, United Kingdom, who were awarded the 2010 Nobel prize in physics. At this point, graphene has received worldwide attention due to its extraordinary properties of a single layer of carbon atoms thickness (0.345 nm). This makes graphene have intrinsic properties which differ from other allotropes of carbon. In Thailand, there are few pieces of research that have been conducted in this field. In this review, properties of graphene, improvements of graphene properties, various synthetic methods, characterization of graphene have been presented and discussed. From the excellent properties of graphene, it is potentially suitable for applications in many aspects such as flexible electronics, transistor, drug delivery, sensor, and graphene-based composites for adsorption of pollutants in wastewater.
Article Details
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov,
A. A. 2004. Electric field effect in atomically thin
carbon films. Science. 306 (5696), 666-669.
[2] Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.;
Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. 2008.
Ultrahigh electron mobility in suspended
graphene. Solid state communications. 146 (9-10),
351-355.
[3] Garg, B.; Bisht, T.; Ling, Y.-C. 2004. Graphene-based
nanomaterials as heterogeneous acid catalysts: a
comprehensive perspective. Molecules. 19 (9),
14582-14614.
[4] Wong, H.-S. P.; Akinwande, D. 2011. Carbon
nanotube and graphene device physics. Cambridge
University Press.
[5] Zhang, T.; Xue, Q.; Zhang, S.; Dong, M. 2012.
Theoretical approaches to graphene and
graphene-based materials. Nano Today. 7 (3), 180-
200.
[6] Zhao, X. 2018. Mechanical Properties of Graphene
and Graphene-Based Nanocomposites. The
University of Manchester (United Kingdom).
[7] Agromayor, R.; Cabaleiro, D.; Pardinas, A.; Vallejo, J.;
Fernandez-Seara, J.; Lugo, L. 2016. Heat transfer
performance of functionalized graphene
nanoplatelet aqueous nanofluids. Materials. 9 (6),
455.
[8] Edwards, R. S.; Coleman, K. S. 2013. Graphene
synthesis: relationship to applications. Nanoscale.
5 (1), 38-51.
[9] Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K.
S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K.
2008. Fine structure constant defines visual
transparency of graphene. Science. 320 (5881),
1308-1308.
[10] Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y. S.
2010. Synthesis of graphene and its applications: a
review. Critical Reviews in Solid State and
Materials Sciences. 35 (1), 52-71.
[11] Bhuyan, M.S.A., Uddin, M.N., Islam, M.M., Bipasha,
F.A., 2016. Synthesis of graphene. Int Nano Lett. 6:
65-83.
[12] Zhang, Y.; Small, J. P.; Pontius, W. V.; Kim, P. 2005.
Fabrication and electric-field-dependent transport
measurements of mesoscopic graphite devices.
Applied Physics Letters. 2005. 86 (7), 073104.
[13] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang,
D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov,
A. A. 2004. Electric field effect in atomically thin
carbon films. Science. 306 (5696), 666-669.
[14] Viculis, L. M.; Mack, J. J.; Kaner, R. B. 2003. A
chemical route to carbon nanoscrolls. Science. 299
(5611), 1361-1361.
[15] Viculis, L. M.; Mack, J. J.; Mayer, O. M.; Hahn, H. T.;
Kaner, R. B. 2015. Intercalation and exfoliation
routes to graphite nanoplatelets. Journal of
Materials Chemistry. 15 (9), 974-978.
[16] Boehm, H.-P.; Clauss, A.; Fischer, G.; Hofmann, U.
1962. Das adsorptionsverhalten sehr dünner
kohlenstoff‐folien. Zeitschrift für anorganische und
allgemeine Chemie. 316 (3‐4), 119-127.
[17] https://www.utu.fi/en/units/sci/units/
chemistry/research/mcca/Pages/Sub-
pages%20of%20Functional%20Materials/
Graphenes.aspx
[18] Li, B.; Cao, X.; Ong, H. G.; Cheah, J. W.; Zhou, X.;
Yin, Z.; Li, H.; Wang, J.; Boey, F.; Huang, W. 2010.
All‐Carbon Electronic Devices Fabricated by
Directly Grown Single‐Walled Carbon Nanotubes
on Reduced Graphene Oxide Electrodes. Advanced
Materials. 22 (28), 3058-3061.
[19] Cano-Marquez, A. G.; Rodriguez-Macias, F. J.;
Campos-Delgado, J.; Espinosa-González, C. G.;
Tristán-López, F.; Ramírez-González, D.; Cullen, D.
A.; Smith, D. J.; Terrones, M.; Vega-Cantú, Y. I. 2009.
Ex-MWNTs: graphene sheets and ribbons produced
by lithium intercalation and exfoliation of carbon
nanotubes. Nano letters. 9 (4), 1527-1533.
[20] Li X, Cai W, An J, Kim S, Nah J, Yang D, et al. 2009.
Large-Area Synthesis of High-Quality and Uniform
Graphene Films on Copper Foils. Science.
324(5932): 1312-4.
[21] Hibino, H., Kageshima, H., & Nagase, M. 2010.
Graphene growth on silicon carbide. Special
Feature, 8, 1-6.
[22] Lerf, A.; Buchsteiner, A.; Pieper, J.; Schöttl, S.;
Dekany, I.; Szabo, T.; Boehm, H. 2006. Hydration
behavior and dynamics of water molecules in
graphite oxide. Journal of Physics and Chemistry of
Solids. 67 (5-6), 1106-1110.
[23] Kim, H.; Abdala, A. A.; Macosko, C. W. 2010.
Graphene/polymer nanocomposites.
Macromolecules. 43 (16), 6515-6530.
[24] Staudenmaier, L. 1898. Verfahren zur darstellung
der graphitsäure. Berichte der deutschen
chemischen Gesellschaft. 31 (2), 1481-1487.
[25] Hummers Jr, W. S.; Offeman, R. E. 1958.
Preparation of graphitic oxide. Journal of the
american chemical society. 80 (6), 1339-1339.
[26] Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.;
Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S. 2008.
Aqueous suspension and characterization of
chemically modified graphene sheets. Chemistry of
materials. 20 (21), 6592-6594.
[27] Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.;
Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu,
W.; Tour, J. M. 2010. Improved synthesis of
graphene oxide. ACS nano. 4 (8), 4806-4814.
[28] Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace,
G. G.2008. Processable aqueous dispersions of
graphene nanosheets. Nature nanotechnology.
3(2), 101.
[29] Zhang, H.-B.; Zheng, W.-G.; Yan, Q.; Yang, Y.; Wang,
J.-W.; Lu, Z.-H.; Ji, G.-Y.; Yu, Z.-Z. 2010. Electrically
conductive polyethylene terephthalate/graphene
nanocomposites prepared by melt compounding.
Polymer. 51 (5), 1191-1196.
[30] Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.;
Martínez-Alonso, A.; Tascon, J. 2009. Atomic force
and scanning tunneling microscopy imaging of
graphene nanosheets derived from graphite oxide.
Langmuir. 25 (10), 5957-5968.
[31] Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. 2008.
Measurement of the elastic properties and intrinsic
strength of monolayer graphene. Science. 321
(5887), 385-388.
[32] Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.;
Sun, Z.; De, S.; McGovern, I.; Holland, B.; Byrne, M.;
Gun'Ko, Y. K. 2008. High-yield production of
graphene by liquid-phase exfoliation of graphite.
Nature nanotechnology. 3 (9), 563.
[33] Zhang, H.-B.; Zheng, W.-G.; Yan, Q.; Yang, Y.; Wang,
J.-W.; Lu, Z.-H.; Ji, G.-Y.; Yu, Z.-Z. 2010. Electrically
conductive polyethylene terephthalate/graphene
nanocomposites prepared by melt compounding.
Polymer. 51 (5), 1191-1196.
[34] Wang, Y. Y.; Ni, Z. H.; Yu, T.; Shen, Z. X.; Wang, H.
M.; Wu, Y. H.; Chen, W.; Shen Wee, A. T. 2008.
Raman studies of monolayer graphene: the
substrate effect. The Journal of Physical Chemistry.
112 (29), 10637-10640.
[35] Ren, P.-G.; Yan, D.-X.; Ji, X.; Chen, T.; Li, Z.-M.
2010. Temperature dependence of graphene oxide
reduced by hydrazine hydrate. Nanotechnology.
22 (5), 055705.
[36] Dai, J.-F.; Wang, G.-J.; Ma, L.; Wu, C.-K. 2015.
Surface properties of graphene: relationship to
graphene-polymer composites. Rev. Adv. Mater.
Sci. 40 (1), 60-71.
[37] Evanoff, K.; Magasinski, A.; Yang, J.; Yushin, G.
2011. Nanosilicon‐coated graphene granules as
anodes for Li‐ion batteries. Advanced Energy
Materials. 1 (4), 495-498.
[38] Ford. J. 2015. Light-bulb moment for unique
material, J. Engineer. 296: 137758-137763.
[39] Lai, C.-P. 2018. Method of making LED light bulb
with graphene filament. Google Patents.
[40] Liao, L.; Lin, Y.-C.; Bao, M.; Cheng, R.; Bai, J.; Liu,
Y.; Qu, Y.; Wang, K. L.; Huang, Y.; Duan, X. 2010.
High-speed graphene transistors with a self-aligned
nanowire gate. Nature. 467 (7313), 305.
[41] Lee, J.; Ha, T.-J.; Li, H.; Parrish, K. N.; Holt, M.;
Dodabalapur, A.; Ruoff, R. S.; Akinwande, D. 2013.
25 GHz embedded-gate graphene transistors with
high-K dielectrics on extremely flexible plastic
sheets. ACS nano. 7 (9), 7744-7750.
[42] Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert,
P. R.; Schwab, M. G.; Kim, K. 2012. A roadmap for
graphene. Nature. 490, 192-200.
[43] Xu, G.; Xu, P.; Shi, D.; Chen, M.2014. Modification
of graphene oxide by a facile coprecipitation
method and click chemistry for use as a drug
carrier. RSC Advances. 4 (54), 28807-28813.
[44] Kuila, T.; Bose, S.; Khanra, P.; Mishra, A. K.; Kim, N.
H.; Lee, J. H. 2011. Recent advances in graphene-
based biosensors. Biosensors and Bioelectronics.
26 (12), 4637-4648.
[45] Nokia photo sensor patent looks to take the
hump out of Pureview Cameras. Available from:
URL: http://www. Wpcentral.com/nokiaphoto-
sensor-patent-looks-take-hump-outpureview-
cameras Accessed September 6, 2013.
[46] Forgacs, E.; Cserhati, T.; Oros, G.2004. Removal of
synthetic dyes from wastewaters: a review.
Environment international. 30 (7), 953-971.
[47] Perreault, F.; De Faria, A. F.; Elimelech, M. 2015.
Environmental applications of graphene-based
nanomaterials. Chemical Society Reviews. 44 (16),
5861-5896.
[48] Molla, A.; Li, Y.; Mandal, B.; Kang, S. G.; Hur, S. H.;
Chung, J. S. 2019. Selective adsorption of organic
dyes on graphene oxide: Theoretical and
experimental analysis. Applied Surface Science.
464, 170-177.
[49] Dai, H.; Huang, Y.; Huang, H. 2018. Eco-friendly
polyvinyl alcohol/carboxymethyl cellulose
hydrogels reinforced with graphene oxide and
bentonite for enhanced adsorption of methylene
blue. Carbohydrate polymers. 185, 1-11.