Dechlorination of PVC waste pyrolysis process using nanoparticle Fe0/Fe2O3 coated on granular activated carbon

Main Article Content

เสฎฐกรณ์ อุปเสน
ปฏิภาณ บุญรวม
ธัญญลักษณ์ ประศรี
พรรณภา นวลนิ่ม
สร้อยพัทธา สร้อยสุวรรณ
ปิยฉัตร วัฒนชัย

Abstract

This research enhanced the modification of activated carbon adsorbents use for polyvinyl chloride (PVC) dechlorination unit. The chlorinated gaseous product was generated via the pyrolysis process of the PVC plastic under an atmosphere of nitrogen gas and a temperature of 400ºC. The retention time of adsorption was varied from 30 to 240 minutes. Adsorbents used in this study were granular activated carbon (GAC), ferric (lll) oxide coated activated carbon (Fe2O3/GAC), and 2.5 wt.% and 5.0 wt.% of zero-valent iron nanoparticles coated activated carbon (Fe-2.5/GAC, Fe-5.0/GAC). The batch PVC pyrolysis process at 400oC for 60 minutes resulted in the weight decomposition of 70 wt.%. The experiment of the dechlorinated unit shown that the GAC adsorbent has increasingly adsorbed the Cl moieties and the adsorption rate yielded approximately in 0.74×10-3 mg Cl/(g.min). For the GAC adsorbent coating with 5 wt.% Fe, the adsorption rate was increased to be 1.73×10-3 mg Cl/(g.min). The adsorption capacity as well as its efficiency for the Fe-5.0/GAC sample resulted in 0.208 mg/g and 70%, respectively. The surface characteristic of pre- and post-tested adsorbents were examined using the SEM-EDX technique. The observation illustrated several white grains deposited on the adsorbent surface for the post-tested sample. It was considered a component of adsorbed chlorinated. Adsorption isotherm for each tested adsorbents could be explained by Freundlich adsorption model.

Article Details

Section
Research paper
Author Biographies

ปฏิภาณ บุญรวม, มหาวิทยาลัยบูรพา

วิศวกรรมเคมี

ธัญญลักษณ์ ประศรี

วิศวกรรมเคมี

พรรณภา นวลนิ่ม

วิศวกรรมเคมี

สร้อยพัทธา สร้อยสุวรรณ, มหาวิทยาลัยบูรพา

วิศวกรรมเคมี

ปิยฉัตร วัฒนชัย, มหาวิทยาลัยบูรพา

วิศวกรรมเคมี

References

[1] Ji, M., Chen, L., Que, J., Zheng, L., Chen, Z. and Wu, Z. 2020. Effects of Transition Metal Oxides on Pyrolysis Properties of PVC. Process Safety and Environmental Protection, 140: 211-220.
[2] Boonruam, P., Wattanachai, P. and Upasen, S. 2018. Study on Chlorinated Gas Adsorption Using Activated Carbon via Polyvinyl Chloride (PVC) Stepwise Pyrolysis Process. Proceedings. 2(20): 1-4.
[3] Luekittisup, P., Tanboonchauy, V., Chumee, J., Predapitakkun, S., Kiatkomol, R. W. and Grisdanurak, N. 2015. Removal of Chlorinated Chemicals in H2 Feedstock Using Modified Activated Carbon. Journal of Chemistry. 2015: 1-9.
[4] Enniya, I., Rghioui, L. and Jourani, A. 2018. Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustainable Chemistry and Pharmacy. 7: 9-16.
[5] Cheng, S., Zhang, L., Ma, A., Xia, H., Peng, J., Li, C. and Shu, J. 2018. Comparison of Activated Carbon and Iron/Cerium Modified Activated Carbon to Remove Methylene Blue from Wastewater. Journal of Environmental Sciences. 65: 92-102.
[6] Solgi, M., Najib, T., Ahmadnejad, S. and Nasernejad, B. 2017. Synthesis and Characterization of Novel Activated Carbon from Medlar Seed for Chromium Removal: Experimental Analysis and Modeling with Artificial Neural Network and Support Vector Regression. Resource-Efficient Technologies. 3(3): 236-248.
[7] Kumar, P.S., Prot, T., Korving, L., Keesman, K.J., Dugulan, I., Loosdrecht, M.C.M. and Witkamp G.J. 2017. Effect of Pore Size Distribution on Iron Oxide Coated Granular Activated Carbons for Phosphate Adsorption – Importance of mesopores. Chemical Engineering Journal. 326: 231-239.
[8] Lemus, J., Martin-Martinez, M., Palomar, J., Gomez-Sainero, L., Gilarranz, M. A. and Rodriguez, J. J. 2012. Removal of Chlorinated Organic Volatile Compounds by Gas Phase Adsorption with Activated Carbon. Chemical Engineering Journal. 211-212: 246-254.
[9] Messele, S.A., Soares, O.S.G.P., Órfão, J.J.M., Bengoa, C., Stüber, F., Fortuny, A., Fabregat, A. and Font, J. 2015. Effect of Activated Carbon Surface Chemistry on The Activity of ZVI/AC Catalysts for Fenton-like Oxidation of Phenol. Catalysis Today. 240: 73-79.
[10] Huang, D., Wang, G., Shi, Z., Li, Z., Kang, F. and Liu, F. 2017. Removal of Hexavalent Chromium in Natural Groundwater using Activated Carbon and Cast Iron Combined System. Journal of Cleaner Production. 165: 667-676.
[11] Boonruam, P., Soisuwan, S., Wattanachai, P., Morillas, H. and Upasen, S. 2020. Solvent Effect on Zero-Valent Iron Nanoparticles (nZVI) Preparation and Its Thermal Oxidation Characteristic. ASEAN Engineering Journal. 10(2): 1-12.
[12] Upasen, S. 2018. Activated Carbon-Doped with Iron Oxide Nanoparticles (a-Fe2O3 NPs) Preparation: Particle Size, Shape, and Impurity. International Journal of ChemTech Research. 11(10): 33-40.
[13] Ahmed, O.H., Altarawneh, M., Jiang, Z.T., Al-Harahsheh, M. and Dlugogorski, B.Z. 2017. Reactions of Products from Thermal Degradation of PVC with Nanoclusters of Alpha-Fe2O3 (hematite). Chemical Engineering Journal. 323: 396-405.
[14] Bi, W. Z., Chen, T. J., Zhao, R. D., Wang, Z. Q., Wu, J. L. and Wu, J. H. 2015. Characteristics of a CaSO4 Oxygen Carrier for Chemical-Looping Combustion: Reaction with Polyvinylchloride Pyrolysis Gases in a Two-Stage Reactor. RCS Advances. 5(44): 34913-34920.