Examination of antibacterial efficiency of ozone generator
Main Article Content
Abstract
This study aims to examine the ability of ozone generator developed by the Faculty of Engineering, Ubon Ratchathani University to inhibit Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus) and Extended Spectrum Beta Lactamase Escherichia coli (ESBL E. coli) that were used as representatives of gram negative bacteria, gram positive bacteria, spore producing bacteria and drug resistant bacteria, respectively. When the tested bacteria with the initial concentration of 0.5 McFarland were streaked on BHI agar and exposed to ozone for 60 min, all tested bacteria were inhibited. Moreover, the 60 min exposure time to ozone could also inhibit all tested bacteria with initial concentrations of 1, 2 and 3 McFarland. The experiments were also performed using 0.5 McFarland as the initial concentration of all tested bacteria with different exposure times to ozone, 10, 20, 30, 40 and 50 min. It was found that exposure to ozone for 10 and 20 min could not inhibit all of the tested bacteria. However, exposure to ozone for 30, 40 and 50 min could inhibit E. coli and S. aureus, but not B. cereus and ESBL E. coli. From this study, it is suggested that the most effective exposure time for the application of the ozone generator to inhibit all types of bacteria would be at least 60 min.
Article Details
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
[2] Chipperfield, M.P., Hossaini, R., Montzka, S.A. and et al. 2020. Renewed and emerging concerns over the production and emission of ozone-depleting substances. Nature Reviews Earth & Environment. 1: 251-263.
[3] Lu, X., Zhang, L. and Shen, L. 2019. Meteorology and climate influences on tropospheric ozone: a review of natural sources, chemistry, and transport patterns. Current Pollution Reports. 5: 238-260.
[4] Guzzon, R., Nardin, T., Micheletti, O. and et al. 2013. Antimicrobial activity of ozone. Effectiveness against the main wine spoilage microorganisms and evaluation of impact on simple phenols in wine. Australian Journal of Grape and Wine Research. 19: 180-188.
[5] Clavo, B., Santana-Rodríguez, N., Llontop, P. and et al. 2018. Ozone therapy as adjuvant for cancer treatment: Is further research warranted? Evidence-Based Complementary and Alternative Medicine. 2018: 7931849.
[6] Luongo, M., Brigida, A.L., Mascolo, L. and et al. 2017. Possible therapeutic effects of ozone mixture on hypoxia in tumor development. Anticancer Research. 37: 425-435.
[7] Hernandez, F., Menendez, S. and Wong, R. 1995. Decrease of blood cholesterol and stimulation of antioxidative response in cardiopathy patients treated with endovenous ozone therapy. Free Radical Biology & Medicine. 19: 115-119.
[8] Lippmann, M. 1989. Health effects of ozone: a critical review. Journal of the Air & Waste Management Association. 39: 672-659.
[9] Croze, M.L. and Zimme, L. 2018. Ozone atmospheric pollution and Alzheimer's disease: from epidemiological facts to molecular mechanisms. Journal of Alzheimer's disease. 62(2):503-522.
[10] Ximenes, M., Cardoso, M., Astorga, F. and et al. 2017. Antimicrobial activity of ozone and NaF-chlorhexidine on early childhood caries. Brazilian Oral Research. 31: e2.
[11] Summerfelt, S. 2003. Ozonation and UV irradiation—an introduction and examples of current applications. Aquacultural Engineering. 28: 21-36.
[12] Dobrynin, D., Friedman, G., Fridman, A. and et al. 2011. Inactivation of bacteria using DC corona discharge: role of ions and humidity. New Journal of Physics. 13: 103033.
[13] Moore, G., Griffith, C. and Peters, A. 2000. Bactericidal properties of ozone and its potential application as a terminal disinfectant. Journal of Food Protection. 63(8): 1100-1106.
[14] Aydogan, A. and Gurol, M.D. 2006. Application of gaseous ozone for inactivation of Bacillus subtilis spores. Journal of the Air & Waste Management Association. 56(2): 179-185.
[15] Hembach, N., Alexander, J., Hiller, C. and et al. 2019. Dissemination prevention of antibiotic resistant and facultative pathogenic bacteria by ultrafiltration and ozone treatment at an urban wastewater treatment plant. Scientific Reports. 9: 12843.
[16] Elvis, A.M. and Ekta, J.S. 2011. Ozone therapy: A clinical review. Journal of natural science, biology, and medicine. 2(1): 66-70.
[17] Feng, L., Zhang K., Gao, M. and et al. 2018. Inactivation of Vibrio parahaemolyticus by aqueous ozone. Journal of Microbiology and Biotechnology. 28(8): 1233–1246.
[18] Gounaki, I., Lironi, M.A. and Venieri D. 2019. Bacterial inactivation & study of damages in subcellular level during disinfection of aqueous samples. In: Proceedings of the 16th International Conference on Environmental Science and Technology, 4-7 September 2019. Rhodes Island, Greece.
[19] Pudpai, N., Phumkhachorn, P. and Rattanachaikunsopon P. 2017. Isolation and characterization of lytic phages against antibiotic-resistant Escherichia coli. Journal of Science and Technology, Ubon Ratchathani University. 19(Special issue 1): 62-71. (in Thai)
[20] Song, M., Zeng, Q., Xiang, Y. and et al. 2018. The antibacterial effect of topical ozone on the treatment of MRSA skin infection. Molecular Medicine Reports. 17(2): 2449-2455.