Release of Fragrance from Microcapsules in Simulated Laundering and Drying Conditions
Main Article Content
Abstract
Fragrance, often in the form of fragrance microcapsules, in laundry products is a key factor affecting purchasing decisions because it gives the user satisfaction during washing and wearing. This research investigated factors influencing the release of fragrance from fragrance microcapsules in simulated laundering and drying conditions including properties of microcapsules, laundering water temperature (30-80oC), hardness of water (50-350 mg/L), pH of water (2.1-10.7) and drying temperature (30-80oC). By studying microcapsules with optical microscope and scanning electron microscope, they were single core microcapsules with approximately 10 microns in size. Results from the examination of chemical functional groups and thermal stability of microcapsules by Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimeter (DSC), respectively revealed that they were polyacrylamide-based microcapsules. Analysis of the release of fragrance from microcapsules after laundering and drying conditions with the Headspace Gas Chromatograph-Flame Ionization Detector found that laundering at 80oC for 1 hour released up to 16% of fragrance from microcapsules by broken release mechanism while laundering at 30oC for 1 h released only 4% of fragrance from microcapsules by sustained release mechanism. Moreover, hardness of water containing calcium carbonate in the range of 50-350 mg/L had significant effect on the release of fragrance from microcapsules only when laundering at 60oC, which increased the release of fragrance. However, hardness of water had insignificant and no effect of the release of fragrance from microcapsules when laundering at 30oC and 80oC, respectively. The release of fragrance from microcapsules was somewhat stable in water with pH in the range of 3.6 and 10.7 but higher when water pH decreased to 2.1. For drying at 30oC, fragrance slowly released from microcapsules. The release of fragrance increased with the increase of drying temperature.
Article Details
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Galbraith C. 2018. An Overview of the Global Flavour & Fragrances Market, 11th edition. http://www.ialconsultants.com/uploads/CUBE_press_release/2018-08-02/FF_PressRelease_2018.pdf. Accessed 1 July 2021.
Zhang, Y., Song, J. and Chen, H. 2016. Preparation of polyacrylate/paraffin microcapsules and its application in prolonged release of fragrance. Journal of Applied Polymer Science. 133(42): 44136
Kaur, R. and et al. 2018. Potential use of polymers and their complexes as media for storage and delivery of fragrances. Journal of Controlled Release. 285: 81-95.
Perinelli, D. and et al. 2020. Encapsulation of flavours and fragrances into polymeric capsules and cyclodextrins inclusion complexes: an update. Molecules. 25(24): 5878.
Zhao, H. and et al. 2019. The fabrication of fragrance microcapsules and their sustained and broken release behavior. Materials. 12(3): 393.
Xiao, Z. and et al. 2019. Encapsulation and sustained release properties of watermelon flavor and its characteristic aroma compounds from γ-cyclodextrin inclusion complexes. Food Hydrocolloids. 97: 105202
Tekin, R., Bac, N. and Erdogmus, H. 2013. Microencapsulation of fragrance and natural volatile oils for application in cosmetics, and household cleaning products. Macromolecular Symposia. 333(1): 35-40.
Pena, B. and et al. 2012. Preparation and characterization of polysulfone microcapsules for fragrance release. Chemical Engineering Journal. 179: 394-403.
Bojana, B.P. and Marica, S. 2016. Microencapsulation technology and applications in added-value functional textiles. Physical Sciences Reviews. 1(1): 20150003.
Roberts, D.W. 2003. Optimisation of the linear alkyl benzene sulfonation process for surfactant manufacture. Organic Process Research & Development. 7(2): 172-184.
Ferreira, D. and et al. 2019. Quantification of the uncertainty of the visual detection of the end-point of a titration: Determination of total hardness in water. Microchemical Journal. 146: 856-863.
Gaabour, L. 2017. Spectroscopic and thermal analysis of polyacrylamide/chitosan (PAM/CS) blend loaded by gold nanoparticles. Results in Physics. 7: 2153-2158.
Radecki, M. and et al. 2015. Temperature-induced phase transition in hydrogels of interpenetrating networks of poly (N-isopropylacrylamide) and polyacrylamide. European Polymer Journal. 68: 68-79.
Ali, Z.A. and et al. 2011. Beneficial effect of chitosan-g-polyacrylamide copolymer in removal of heavy metals from industrial dye effluents. International Journal of Environmental Sciences. 1(5): 820-833.
Lopez-Leon, T. and et al. 2007. Hofmeister effects on poly(NIPAM) microgel particles: macroscopic evidence of ion adsorption and changes in water structure. ChemPhysChem. 8(1): 148-156.
Farooqi, Z. and et al. 2017. Stability of poly (N-isopropylacrylamide-co-acrylic acid) polymer microgels under various conditions of temperature, pH and salt concentration. Arabian Journal of Chemistry. 10(3): 329-335.
Yang, Z. and et al. 2014. Development and evaluation of novel flavour microcapsules containing vanilla oil using complex coacervation approach. Food Chemistry. 145: 272-277.