Effect of Concentrations of Glyphosate, Paraquat and Cypermethrin on Mortality of Red Claw Crayfish Cherax quadricarinatus (von Martens, 1868)
Main Article Content
Abstract
This research aimed to study the effect of three chemicals namely glyphosate, paraquat, and cypermethrin on acute mortality of red claw crayfish Cherax quadricarinatus (von Martens, 1868) in laboratory at the Faculty of Agriculture, Ubon Ratchathani Rajabhat University to assess the possibility in controlling the invasion of red claw crayfish if they escape into natural waters contaminated with these three chemical substances. The recently hatched red claw crayfish with the average length of 22.5±0.06 cm and the average weight of 0.85±0.03 g were used in the study. They were raised in 5 liter-plastic ponds (10 animals in each pond). Numbers of death were collected every 24, 48, and 72 h at each level of concentration. It was found that the lethal rates of the young red claw crayfish increased at all times studied depending on the increased concentrations of all three chemicals. The 50% lethal concentrations of glyphosate for the young red claw crayfish at 24, 48, and 72 h were 8.518, 7.161, and 6.252 ppm, respectively. While those of paraquat at 24, 48, and 72 h were 0.719, 0.482, and 0.363 ppm, respectively and those of cypermethrin at 24, 48, and 72 h were 0.007, 0.005, and 0.003 ppm, respectively. These results indicated that cypermethrin had the most effect on acute mortality of the young red claw crayfish, followed by paraquat and glyphosate, respectively. Since that maximum allowable concentrations of chemicals in environment are lower than lethal concentrations for the young red claw crayfish obtained in this study. Therefore, it is unlikely that toxicity contaminated in natural waters will control the invasion of red claw crayfish if they escape into such environment.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
National Bureau of Agricultural Commodity and Food Standards Ministry of Agriculture and Cooperatives. 2008. Pesticide Residues: Maximum Residue Limits. https://www.acfs.go.th/standard /download/eng/MRL.pdf. Accessed 15 May 2021.
Capinha C. and et al. 2015. The dispersal of alien species redefines biogeography in the Anthropocene. Science. 348(6240): 1248-1251.
Srisaart, A. and Thinkaownoi, S. 2015. Examples and Methods of Raising Red Lobsters. Naka intermedia, Bangkok. 22 (in Thai)
Srisaart, A. 2015. Solution Red Lobster Farming. Bangkok: Naka intermedia. 124. (in Thai)
Petchoi, C. 2017. Application of agrochemicals in the lower Mekong basin. Journal of Science and technology Ubon Ratchathani University. 19(1): 111-122. (in Thai)
Peruzzo, P.J., Porta, A.A. and Ronco, A.E. 2008. Levels of glyphosate in surface waters, sediments and soils associated with direct soybean cultivation in north pampasic region of Argentina. Environmental Pollution. 156(1): 61-66.
Wilson, C. and Tisdell, C. 2001. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecological Economics. 39(3): 449-462.
Rao, P.S.C. and Davidson, J.M.. 1980. Estimation of Pesticide Retention and Transformation Parameters Required in Nonpoint Source Pollution Models. Ann Arbor, MI: Ann Arbor Science Publishers.
Leadprathom, N. and Hiransajjaled, R. 2005. Project on the Effects of Herbicides on Proteins Involved in Osmoregulation in Young Seabass (Lates calcarifer). http://dspace. lib.buu.ac.th/xmlui/handle/1234567890/1474?show=full. Accessed 1 April 2021. (in Thai)
Leadprathom, N. and et al. 2004. Effects of salinity on acute toxicity of cypermethrin and paraquat in sea bass. Journal of Fisheries Technology Research. 7(2): 82-93. (in Thai)
Sangchan, W. and et al. 2014. Monitoring and risk assessment of pesticides in a tropical river of an agricultural watershed in northern Thailand. Environmental Monitoring and Assessment. 186(2): 1083–1099.
Soares, M.P. and et al. 2019. Cypermetrin-base formulation Barrage induces histological change in gill of the Pantanal endemic shrimp Macrobrachium pantanalense. Environmental Toxicology and Pharamacology. 67: 66-78.
Wang, X. and et al. 2013. Low salinity decreases the tolerance to two pesticides, beta-cypermethrin and acephate, of white-leg shrimp, Litopenaeus vannamei. Journal of Aquaculture Research and Development. 4(5): 1000190.
Aungsunnern, S. 2015. Environmental Impact from Pesticide Utilization. EAU Heritage Journal Science and Technology. 9(1): 50-63. (in Thai)
Leadprathom, N. 2013. Toxicity of paraquat to aquatic animal. King Mongkut's Agricultural Journal. 31(2): 95-101. (in Thai)
Thanomsit, C. and Malaram, N. 2017. Effects of glyphosate on aquatic life. Kochchasarn Journal of Science. 39(1): 98-109. (in Thai)
Banaee, M. and et al. 2019. Acute exposure to chlorpyrifos and glyphosate and glyphosate induces changes in hemolymph biochemical parameters in the crayfish, Astacus leptodactylus (Eschscholtz, 1823). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 222: 145-155.
Environmental Protection Agency. 2008. Reregistration Eligibility Decision for Cypermethrin. https://nepis.epa.gov/Exe/ZyPDF. cgi/P100BE6X.PDF? Dockey=P100BE6X.PDF. Accessed 30 May 2021.