Antifungal Efficiency of Biochar Crude Extracts
Main Article Content
Abstract
Biochar is a charcoal-like substance made by burning biomass such as agricultural wastes in a process called pyrolysis. Currently, biochar has been used in agriculture to improve soil quality. It has also been reported to inhibit plant pathogenic microorganisms in the soil. Therefore, this study aimed to investigate the antimicrobial efficiency against Aspergillus sp. and Penicillium sp. of crude extracts of biochar produced from sawdust, coconut shell, acacia wood, rubber pericarp and rubber wood. The biochar was extracted with two solvents including methanol and distilled water. Three concentration levels of the methanolic and aqueous extracts used in the experiments were 1, 2 and 3 %(v/v). From the results, it was found that different biochar extracts inhibited the tested fungi differently and their concentrations had direct effect on the reduction of fungal mycelia. The methanolic rubber wood derived biochar with the concentration of 3% (v/v) exhibited the highest antifungal activity against Aspergillus sp. with the % growth inhibition of 10.56±0.60% while the methanolic coconut shell derived biochar with the concentration of 3% (v/v) exhibited the highest antifungal activity against Penicillium sp. with the % growth inhibition of 24.29±9.31%. This study demonstrates the antifungal potential of biochar which can be applied in various fields in the future.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Tomczyk, A., Sokołowska, Z. and Boguta, P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology. 19: 191-215.
Wijitkosum, S. and Jiwnok, P. 2019. Elemental composition of biochar obtained from agricultural waste for soil amendment and carbon sequestration. Applied Sciences. 9: 3980.
Yu, H. and et al. 2019. Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management. 232: 8-21.
Yooyen, J., Wijitkosum, S and Sriburi, T. 2015. Increasing yield of soybean by adding biochar. Journal of Environmental Research and Development. 9: 1066–1074.
Pituya, P. and Popradit, A. 2017. Development and restoration of sandy soil in the rain-shadow area with bio-charcoal. VRU Research and Development Journal Science and Technology. 12(3): 27-38. (in Thai)
Farrell, M. and et al. 2013. Microbial utilization of biochar-derived carbon. Science of the Total Environment. 465, 288-297.
Wang, G. and et al. 2019. Suppression of phytophthora blight of pepper by biochar amendment is associated with improved soil bacterial properties. Biology and Fertility of Soils. 55: 813-824.
Thaenthanee, S. and Daosukho, S. 2016. The survival of agricultural microorganisms in biochar. Bulletin of Applied Sciences. 5(5): 89-95. (in Thai)
Wang, G. and et al. 2020. Biochar mediated control of phytophthora blight of pepper is closely related to the improvement of the rhizosphere fungal community. Frontiers in Microbiology. 11: 1-12.
Shahid, M., Jabeen, K. and Iqbal, S. 2018. Evaluation of antifungal potential of wood biochar against Fusarium oxysporum Schlecht. Journal of Biological Society of Pakistan. 64(2): 227-232.
Sehar, A. and et al. 2017. Assessment of biochar and compost antifungal potential against Botryodiplodia theobromae Pat. International Journal of Biology and Biotechnology. 14(4): 585-589.
Munawwar, M., Jabeen, K. and Iqbal, S. 2018. Biochar and compost antifungal activity against Botrytis cinerea Pers. Ex Fr. Bangladesh Journal of Botany. 47(1): 141-146.
Muangkote, S. and et al. 2017. Effect of roasting temperatures of garlic, shallot and dried chili on antifungal activity of Aspergillus niger. Journal of Science and Technology, Ubon Ratchathani University. 19(3): 88-100. (in Thai)
Ghuffar, S. and et al. 2021. Studies of Penicillium species associated with blue mold disease of grapes and management through plant essential oils as non-hazardous botanical fungicides. Green Processing and Synthesis. 10: 21-36.
Habib, W. and et al. 2021. Occurrence and characterization of Penicillium species isolated from post-harvest apples in Lebanon. Toxins. 13: 730.
Teoh, Y.P., Mashitah, M.D. and Salmiah, U. 2015. Antifungal activities of selected wood-degrading fungi of rubberwood. Journal of Tropical Forest Science. 27(3): 325–333.
Petchpradab, P. and et al. 2009. Hydrothermal pretreatment of rubber wood for the sacchari-fication process. Industrial & Engineering Chemistry Research. 48: 4587–4591.
Lobo, F.C.M. and et al. 2021. An Overview of the antimicrobial properties of lignocellulosic materials. Molecules. 26: 1749.
de Meo, C.M.L. and et al. 2020. Lignin isolated from Caesalpinia pulcherrima leaves has antioxidant, antifungal and immunostimulatory activities. International Journal of Biological Macromolecules. 162(1): 1725-1733.
Husseinsyah, S. and Mostapha, M. 2011. The effect of filler content on properties of coconut shell filled polyester composites. Malaysian Polymer Journal. 6(1): 87-97.
Pritha, S.D.S.J. and Karpagam, S. 2018. Antimicrobial activity of coconut shell oil. International Journal of Pharmaceutical Sciences and Research. 9(4): 1628-1631.
Dayrit, F.M. 2015. The properties of lauric acid and their significance in coconut oil. Journal of the American Oil Chemists' Society. 92: 15.