Effect of Calcination Temperature on Physicochemical Properties and Antifungal Activity of Nano-Zinc Oxide Prepared by Sol-Gel Method
Main Article Content
Abstract
Zinc oxide is an environmentally friendly substance with broad-spectrum antimicrobial activity. Synthesis of zinc oxide into nanoscale structures can increase its potential for utilization. In this study, nano-zinc oxide was synthesized by sol-gel method using calcination temperatures at 300, 500 and 700°C. This research aimed to study the effect of calcination temperature on physicochemical properties of nano-zinc oxide and its antifungal activity against Aecidium mori (Barclay) Barclay, the causative agent of mulberry red rust. The properties of nano-zinc oxide were investigated and analyzed by using X-Ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) specific surface area analysis. Antifungal activity was studied by poisoned food technique. From the experiments, it was found that the synthesized zinc oxide particles had a hexagonal wurtzite crystal structure. Sizes of the particles were at the nanoscopic scale. They had specific surface areas of 6.381-16.487 m2/g and also exhibited antifungal activity. The nano-zinc oxide synthesized at calcination temperature of 300°C with the concentration of 3,000 µg/mL in potato dextrose agar was found to exhibit the highest antifungal activity. Furthermore, it was found that nano-zinc oxide synthesized at different calcination temperatures had different particle sizes, specific surface areas and antifungal activity.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Manjunatha, S.E. and et al. 2020. Assortment for host resistance and eco-friendly management of mulberry powdery mildew caused by Phyllactinia corylea (Pers.) Karst. Journal of Pharmacognosy and Phytochemistry. 9(3): 2159-2162.
Adhikari, M.K. 2019. Aecidium mori (Barclay) Barclay (rust fungus) parasitic on Morus alba L.: A new record for Nepal. Journal of Plant Resources. 17(1): 3-5.
Aime, M.C. and McTaggart, A.R. 2021. A higher-rank classification for rust fungi, with notes on genera. Fungal Systematics and Evolution. 7: 21-47.
Helfer, S. 2014. Rust fungi and global change. New Phytologist. 201:770-780.
Vijayakumar, S. and et al. 2021. Potential eco-friendly Zinc Oxide nanomaterials through Phyco-nanotechnology - A review. Biocatalysis and Agricultural Biotechnology. 35: 102050.
Jabar, A. and et al. 2017. Synthesis nano zinc oxide materials and their activity on fungus growth. Engineering and Technology Journal. 35(1): 76-84.
Thakur, S., Neogi, S. and Ray, A.K. 2021. Morphology controlled synthesis of ZnO nanostructures for caffeine degradation and Escherichia coli inactivation in water. Catalysts. 11(1): 1-18.
Sakaroj, S. and et al. 2020. A potential of thai fruit peel extracts for green synthesis of ZnO nanoparticles. In: Proceedings of the 58th Kasetsart University Annual Conference, 5-7 February 2020. Bangkok, Thailand. (in Thai)
Kalasung, S. and Horprathum, M. 2018. Effects of precursor concentration on morphology and photocatalytic property of ZnO nanorod prepared by hydrothermal method. Thai Science and Technology Journal. 28(2): 230-240. (in Thai)
Pitsamai, S. 2015. Effect of ZnO nanoparticles on the antifungal of mango cv. Nam dok mai. In: Proceedings of the 2nd National Research Conference of Nakhonratchasima College, 18-19 June 2015. Nakhonratchasima, Thailand. (in Thai)
Tedsree, N. and Tedsree, K. 2016. Anti-phytopathogenic fungal activity of nano zinc oxide. Songklanakarin Journal of Plant Science. 3(Suppl.): 7-14. (in Thai)
Pholnak, C. 2017. Zinc oxide nanoparticles and antimicrobial resistance. Thai Journal of Physics. 34(3-4): 37-47. (in Thai)
Arciniegas-Grijalba, P.A. and et al. 2017. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Applied Nanoscience. 7: 225-241.
Sangchay, W. and Ubolchollakhat, K. 2016. Photocatalytic and antibacterial activities of ZnO powders prepared via a sol-gel method. KKU Engineering Journal. 43(1): 21-25. (in Thai)
Sudheer Kumar, K.H., Dhananjaya, N. and Yadav, L.S.R. 2018. E. tirucalli plant latex mediated green combustion synthesis of ZnO nanoparticles: Structure, photoluminescence and photo-catalytic activities. Journal of Science: Advanced Materials and Devices. 3(3): 303-309.
Khamklieng, U. and et al. 2018. Biofilm coating from garlic extracts plus biosurfactant against fungal pathogens on mangoes (Nam Dok Mai). Huachiew Chalermprakiet Science and Technology Journal. 4(1): 113-123. (in Thai)
Kenyotha, N. and Laokul, P. 2019. Preparation of zinc oxide hollow spheres and their application as photoanode in dye sensitized solar cell. Burapha Science Journal. 24(3): 913-928. (in Thai)
Chabattula, S.C. and et al. 2021. Anticancer therapeutic efficacy of biogenic Am-ZnO nanoparticles on 2D and 3D tumor models. Materials Today Chemistry. 22: 100618.
Sabeeh, S.H. and Jassam, R.H. 2018. The effect of annealing temperature and Al dopant on characterization of ZnO thin films prepared by sol-gel method. Results in Physics. 10(2018): 212-216.
Qi, S., Jianmei, L. and Tao, L. 2018. Zinc oxide nanoparticle as a novel class of antifungal agents: Current advances and future perspectives. Journal of Agricultural and Food Chemistry. 66: 11209-11220.