Evaluation of Virulence of Local Isolates of Entomopathogenic Fungi against Common Cutworm (Spodoptera litura Fabricius) Under Laboratory Condition and Spore Production Using Cereal Grains
Main Article Content
Abstract
This research aimed to evaluate the virulence of local isolates of entomopathogenic fungi against a common cutworm (Spodoptera litura Fabricius) under laboratory condition and to evaluate spore production using cereal grains. From the isolation of entomopathogenic fungi from soil samples collected from different areas in Nakhon Ratchasima province, a total of 11 isolates of Metarhizium spp. (MetNM_M4/3, MetNM_M7/3, MetNM_M8/6, MetNM_M10/2, MetNM_M11/1, MetNM_JKR14/2, MetNM_JKR16/3, MetNM_JKR17/2, MetNM_JKR18/4, MetNM_JKR19/4 and MetNM_NBM10/3) and 1 isolate of Beauveria bassiana (BbNM_CC1/1) were isolated. When all of the isolated entomopathogenic fungi were evaluated for their mycelium growth on potato dextrose agar (PDA) for 21 days, the isolate MetNM_M7/3 had the largest average colony diameter (78.00 mm) while the isolate B. bassiana isolate BbNM_CC1/1 had the smallest average colony diameter (45.50 mm). All of the isolated entomopathogenic fungi were tested for their infectivity against a common cutworm under laboratory condition by spraying fungal spores at a concentration of 1×108 spores/mL on the 3rd instar common cutworm. It was found that the isolate BbNM_CC1/1 caused the highest cumulative mortality and cumulative infection of the common cutworm (96.67%). When the isolate BbNM_CC1/1 was tested for its spore production on different cereal grains (sorghum, unmilled rice, maize, broken maize, and broken rice) by cultivating the fungus on the cereal grains for 7, 14 and 21 days, the fungus produced the highest number of spores on broken rice (4.10 x 108 spores/g) when cultivated for 21 days. This study demonstrated that the isolate B. bassiana BbNM_CC1/1 was the most virulent against a common cutworm under laboratory condition. Therefore, it would be interesting for further evaluation in greenhouse and field conditions.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Chari, M.S. and Patel, N.G. 1983. Cotton leaf worm Spodoptera litura (Fab.), its biology and integrated control measures. Cotton Development. 13: 7-8.
Siriphongtangmun, S. and et al. 2016. Pests of Vegetables, Mushrooms and Flowering Plants. Nonthaburi: Printing House of the Agricultural Co-operative Federation of Thailand, Ltd. (in Thai)
Mochida, O. 1973. Two important pests, Spodoptera litura (F.) and Spodoptera littoralis (Boisduval) on various crops: morphological discrimination of the adult, pupal and larval stages. Applied Entomology and Zoology. 8: 205-214.
Matintarangson, N. 2021. Effect of weed crude extract from Asteraceae as the oral toxicity and growth inhibition on common cutworm. Journal of Science and Technology, Ubon Ratchathani University. 23(2): 12-17. (in Thai)
Isenring, R. 2010. Pesticides reduce biodiversity. Pesticides News. 88: 4-7.
Mitra, A., Chatterjee, C. and Mandal, F.B. 2011. Synthetic chemical pesticides and their effects on birds. Research Journal of Environmental Toxicology. 5(2): 81-96.
Nicolopoulou-Stamati, P. and et al. 2016. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in Public Health. 4: 1-8.
Sarwar, M. and Salman, M. 2015. Insecticides resistance in insect pests or vectors and development of novel strategies to combat its evolution. International Journal of Bioinformatics and Biomedical Engineering. 1(3): 344-351.
Abbas, N. and et al. 2014. Resistance of Spodoptera litura (Lepidoptera: Noctuidae) to profenofos: Relative fitness and cross resistance. Crop Protection. 58: 49-54.
Whalon, M.E., Mota-Sanchez, D. and Hollingworth, R.M. 2008. Analysis of global pesticide resistance in arthropods. In: Whalon, M.E., Mota-Sanchez, D. and Hollingworth, R.M. (eds.) Global Pesticide Resistance in Arthropods. Wallingford: CAB International.
Bhatt, P., Thodsare, N. and Srivastava. R.P. 2014. Toxicity of some bioactive medicinal plant extracts to Asian army worm, Spodoptera litura. Journal of Applied and Natural Science. 6(1): 139-143.
Samson, R.A., Evans, H.C. and Latge, J.P. 1988. Atlas of Entomopathogenic Fungi. Berlin: Springer Verlag.
Thackar, J.R.M. 2002. An Introduction to Arthropod Pest Control. Cambridge: Cambridge University Press.
Um, M. and et al. 2018. A review on the use of entomopathogenic fungi in the management of insect pests of field crops. Journal of Entomology and Zoology Studies. 6(1): 27-32.
Aw, K.M.S. and Hue, S.M. 2017. Mode of infection of Metarhizium spp. fungus and their potential as biological control agents. Journal of Fungi. 3(30): 2-20.
Altinok, H.H., Altinok, M.A. and Koca, A.K. 2020. Mode of action of entomopathogenic fungi. Current Trends in Natural Sciences. 8(16): 117-124.
Bidochka, M.J., Kasperskl, J.E. and Wild, G.A.M. 1998. Occurrence of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana in soil from temperate and near northern habitats. Canadian Journal of Botany. 76: 1198-1204.
Humber, R.A. 2012. Identification of entomopathogenic fungi. In: Lacey, L.A. (ed.) Techniques in Invertebrate Pathology. London: Academic Press.
Han, H.J. and et al. 2012. Virulence of entomopathogenic fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the microbial control of Spodoptera exigua. Journal of Microbiology. 18(9): 385-390.
Natongkham, A. and et al. 2010. The efficiency of Northeastern isolates of green muscardine fungi Metarhizium spp. on controlling economic insect pests. KKU Research Journal. 15(10): 930-940. (in Thai)
Thaochan, N. and Sausa-Ard, W. 2017. Occurrence and effectiveness of indigenous Metarhizium anisopliae against adults Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae) in Southern Thailand. Songklanakarin Journal of Science and Technology. 39(3): 325-334.
Sepulveda, M. and et al. 2016. Molecular, morphological and pathogenic characterization of six strains of Metarhizium spp. (Deuteromycotina: Hyphomycetes) for the control of Aegorhinus superciliosus (Coleoptera: Curculionidae). Chilean Journal of Agricultural Research. 76: 77-83.
Deb, L., Thangaswamy, R. and Monika, H. 2017. Growth of Beauveria bassiana in different solid media. Trends in Biosciences. 10(23): 4815-4817.
Indriyanti, D.R., Mahmuda, S. and Slamet, M. 2017. Effect of Beauveria bassiana doses on Spodoptera litura mortality. International Journal of Scientific & Technology Research. 6(09): 206- 210.
St. Leger, R.J., Staples, R.C. and Roberts, D.W. 1991. Entomopathogenic isolates of Metarhizium anisopliae, Beauveria bassiana and Aspergillus flavus produce multiple extracellular chitinase isozymes. Journal of Invertebrate Pathology. 61: 81-84.
St. Leger, R.J. and et al. 1996. Construction of an improved mycoinsecticide overexpressing a toxic protease. Proceedings of the National Academy of Sciences of the United States of America. 93: 6349-6354.
Malarvannan, S. and et al. 2010. Laboratory evaluation of the entomopathogenic fungi, Beauveria bassiana against the tobacco caterpillar, Spodoptera litura Fabricius (Noctuidae: Lepidoptera). Journal of Biopesticides. 3(1 Special Issue): 126-131.
Baskar, K. and et al. 2012. Larvicidal and growth inhibitory activities of entomopathogenic fungus, Beauveria bassiana against Asian army worm, Spodoptera litura Fab. (Lepidoptera: Noctuidae). Journal of Entomology. 9: 155-162.
Sirimungkararat, S. 2018. Insect Pathology and Application. Khon Kean: KKU Printing House. (in Thai)
Bugti, G.A. and et al. 2020. Entomopathogenic fungi: Factors involved in successful microbial control of insect pests. European Journal of Entomology. 17: 74-83.
Seema, Y., Neeraj, T. and Krishan, K. 2013. Mass production of entomopathogens Beauveria bassiana and Metarhizium anisopliae using rice as a substrate by diphasic liquid-solid fermentation technique. International Journal of Advanced Biological Research. 3: 331-335.
Vats, S., Singh, R.K. and Singh, B. 2015. Mass production of Beauveria bassiana (NCIM No.1300) fungal spores on cereal grains and agro-industrial residues. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 6(1): 57-60.
Rai, R., Pandey, R. and Tamta, A.K. 2021. Mass multiplication of entomopathogenic fungi Beauveria bassiana with agroindustrial wastes. Indian Journal of Entomology. 83(4): 644-645.
Mar, T.T. and Lumyong, S. 2012. Conidial production of entomopathogenic fungi in solid state fermentation. KKU Research Journal. 17(5): 762-768.
Jaronski, S.T. and Mascarin, G.M. 2017. Mass production of fungal entomopathogens. In: Lacey, L.A. (ed.) Microbial Control of Insect and Mite Pests. London: Academic Press.
Taylor, B. and et al. 2013. Yield and germination of the entomopathogenic fungus Beauveria bassiana when grown on different rice preparations. Journal of Stored Products Research. 53: 23-26.