Endophytic Fungi Producing Indole Acetic Acid and Promoting Seed Germination of Habenaria rhodocheila Hance
Main Article Content
Abstract
This research aimed to isolate endophytic fungi producing indole acetic acid (IAA) and promoting seed germination of Habenaria rhodocheila Hance. A total of 26 isolates of endophytic fungi were isolated from H. rhodocheila roots. By using Salkowski’s method to examine IAA production of the isolated endophytic fungi, only 6 isolates were found to be able to produce IAA including isolates HRNP-F01, HRNP-F06, HRNP-F14, HRNP-F17, HRNP-F21 and HRNP-F22. From co-culture of H. rhodocheila seeds with 6 isolates of IAA producing endophytic fungi, it was found that the isolates HRNP-F06 and HRNP-F14 exhibited the highest percentages of seed germination of 97.27% and 98.02%, respectively which were significantly different (p<0.05) from that of the control. The isolate HRNP-F06 was able to stimulate seeds to germinate and develop into stage 2 of seed germination (the stage at which embryo enlargement continues), while the isolate HRNP-F14 was able to stimulate seeds to germinate and develop into stage 3 of seed germination (the stage at which embryo develops into protocorm). Nucleotide sequence analysis of the internal transcribed spacer (ITS) region of ribosomal DNA identified the isolates HRNP-F06 and HRNP-F14 as Fusarium oxysporum and Annulohypoxylon sp., respectively. This study indicated that F. oxysporum HRNP-F06 and Annulohypoxylon sp. HRNP-F14 had potential to be used to promote germination of seeds.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Bhatti, S. and Thakur, M. 2022. An overview on orchids and their Interaction with endophytes. The Botanica Review. 88: 485-504.
Ma, X. and et al. 2015. Non-mycorrhizal endophytic fungi from orchids. Current Science. 109(1): 72-87.
Sarsaiya, S., Shi, J. and Chen, J. 2019. A comprehensive review on fungal endophytes and its dynamics on Orchidaceae plants: current research, challenges, and future possibilities. Bioengineered. 10(1): 316-334.
Chen, J. and et al. 2011. Endophytic fungi assemblages from 10 Dendrobium medicinal plants (Orchidaceae). World Journal Microbiology and Biotechnology. 27: 1009-1016.
Khan, A.L. and et al. 2012. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiology. 12: 3.
Shah, S. and et al. 2022. Colonization with non-mycorrhizal culturable endophytic fungi enhances orchid growth and indole acetic acid production. BMC Microbiology. 22: 101.
Vujanovic, V. and et al. 2000. Viability testing of orchid seeds and the promotion of colouration and germination. Annals of Botany. 86(1): 79-86.
Jaroszuk-Scisel, J., Kurek, E. and Trytek, M. 2014. Efficiency of indoleacetic acid, gibberellic acid and ethylene synthesized in vitro by Fusarium culmorum strains with different effects on cereal growth. Biologia. 69(3): 281-292.
Numponsak, T. and et al. 2018. Biosynthetic pathway and optimal conditions for the production of indole-3-acetic acid by an endophytic fungus, Colletotrichum fructicola CMU-A109. PLoS One. 13(10): e0205070.
Chutima, R. and Lumyong, S. 2012. Production of indole-3-acetic acid by Thai native orchid-associated fungi. Symbiosis. 56: 35-44.
Chand, K. and et al. 2020. Isolation, characterization, and plant growth-promoting activities of endophytic fungi from a wild orchid Vanda cristata. Plant Signaling & Behavior. 15: 1744294.
Deepthi, A.S. and Ray, J.G. 2021. Ecological relevance of the endophytic fungal diversity in velamen roots of tropical epiphytic orchids. Czech Mycology. 73(1): 91-108.
Avhad, A., Patil, N. and Zunjarrao, R. 2023. Isolation and identification of rhizospheric and endophytic fungi associated with Habenaria rrachyphylla (Lindl.) Aitch.: An endemic and rare orchid of the Western Ghats of Maharashtra, India. Biological Forum-An International Journal. 15(5): 1535-1542.
Tsavkelova, E. and et al. 2012. Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genetics and Biology. 49(1): 48-57.
Suwattanachat, N., Posoongnoen, S. and Thummavongsa, T. 2022. Effects of endophytic fungal extract on seed germination and seedling growth of Aerides houlletiana Rchb.f. (Orchidaceae) in vitro. Burapha Science Journal. 27(1): 467-480. (in Thai)
Kurzweil, H. 2009. The genus Habenaria (Orchidaceae) in Thailand. Thai Forest Bulletin (Botany). 37: 7-105.
Jolman, D. and et al. 2022. The challenges of growing orchids from seeds for conservation: An assessment of asymbiotic techniques. Applications in Plant Sciences. 10(5): e11496.
Khamchatra, N. and et al. 2016. Symbiotic seed germination of an endangered epiphytic slipper orchid, Paphiopedilum villosum (Lindl.) Stein. from Thailand. South African Journal Botany. 104: 76-81.
Masuhara, G. and Katsuya, K. 1994. In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames. var. amoena (M. Bieberstein) Hara (Orchidaceae). New Phytologist. 127: 711-718.
Rahman, A. and et al. 2010. Salkowski’s reagent test as a primary screening index for functionalities of rhizobacteria isolated from wild Dipterocarp saplings growing naturally on medium-strongly acidic tropical peat soil. Bioscience, Biotechnology and Biochemistry. 74(11): 2202-2208.
Stewart, S. and Zettler, L. 2002. Symbiotic germination of three semi-aquatic rein orchids (Habenaria repens, H. quinquiseta, H. macroceratitis) from Florida. Aquatic Botany. 72(1): 25-35.
Liu, D. and et al. 2000. Rapid mini-preparation of fungal DNA for PCR. Journal of Clinical Microbiology. 38 (1): 471.
Toju, H. and et al. 2012. High-coverage ITS primers for the DNA-based Identification of Ascomycetes and Basidiomycetes in environmental samples. PLoS One. 7(7): e40863.
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution. 16(2): 111-120.
Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA 7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 33(7): 1870-1874.
Vega, F.E. and et al. 2010. Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecology. 3(3): 122-138.
Aly, A.H., Debbab, A. and Proksch, P. 2011. Fungal endophytes: Unique plant inhabitants with great promises. Applied Microbiology and Biotechnology. 90(6): 1829-1845.
Shah, S. and et al. 2019. Isolation and characterization of plant growth-promoting endophytic fungi from the roots of Dendrobium moniliforme. Plants. 8(1): 5.
Jahn, L., Hofmann, U. and Ludwig-Muller, J. 2021. Indole-3-acetic acid Is synthesized by the endophyte Cyanodermella asteris via a tryptophan-dependent and -independent way and mediates the interaction with a non-host plant. International Journal of Molecular Sciences. 22(5): 2651.
Duca, D. and et al. Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek. 106(1): 85-125.
Carreno-Lopez, R. and et al. 2000. Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense. Molecular & General Genetics: MGG. 264(4): 521-530.
Nieto-Jacobo, M.F. and et al. 2017. Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Frontiers in Plant Science. 8: 102.
Michielse, C.B. and Rep, M. 2009. Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology. 10(3): 311-324.
Pfliegler, W.P. and et al. 2020. The Aspergilli and their mycotoxins: metabolic interactions with plants and the soil biota. Frontiers in Microbiology. 10: 2921.
Johnson, T.R. and et al. 2007. Asymbiotic and symbiotic seed germination of Eulophia alta (Orchidaceae)-preliminary evidence for the symbiotic culture advantage. Plant Cell, Tissue and Organ Culture. 90(3): 313-323.
Chutima, R. and et al. 2011. Endophytic fungi from Pecteilis susannae (L.) Rafin (Orchidaceae), a threatened terrestrial orchid in Thailand. Mycorrhiza. 21(3): 221-229.
Singh, V.K. and Kumar, A. 2023. Secondary metabolites from endophytic fungi: production, methods of analysis, and diverse pharmaceutical potential. Symbiosis. 90: 111-125.
Kuhnert, E. and et al. 2017. Phylogenetic and chemotaxonomic resolution of the genus Annulohypoxylon (Xylariaceae) including four new species. Fungal Diversity. 85(1): 1-43.
Pecoraro, L. 2021. Fungal diversity driven by bark features affects phorophyte preference in epiphytic orchids from southern China. Scientific Reports. 11(1): 11287.
Mishra, R. and et al. 2019. Endophytic fungi and their enzymatic potential. In: Singh, B.P. (ed) Advances in Endophytic Fungal Research: Present Status and Future Challenges. Cham: Springer International Publishing.
Lee, Y.I. and Yeung, E.C. 2023. The orchid seed coat: A developmental and functional perspective. Botanical Studies. 64(1): 27.
Chen, X.G. and et al. 2022. What role does the seed coat play during symbiotic seed germination in orchids: an experimental approach with Dendrobium officinale. BMC Plant Biology. 22: 375.
Fu, S.F. and et al. 2015. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signal & Behavior. 10(8): e1048052.
Li, M. and et al. 2022. Auxin biosynthesis maintains embryo identity and growth during baby boom-induced somatic embryogenesis. Plant Physiology. 188(2): 1095-1110.
Xia, Y. and et al. 2019. Culturable endophytic fungal communities associated with plants in organic and conventional farming systems and their effects on plant growth. Scientific Reports. 9: 1669.
Phillips, R.D., Reiter, N. and Peakall, R. 2020. Orchid conservation: from theory to practice. Annals of Botany. 126: 345-362.
Vitt, P. and et al. 2023. Global conservation prioritization for the Orchidaceae. Scientific Reports. 13: 6718.