Investigation of Waste Material Properties on Collapse Prevention in Underground Mine under the Backfilling Method
Main Article Content
Abstract
Waste material has been selected as an effective backfill in underground mines due to its advantages of collapse prevention, cost-effective, and less surface disposal of mine tailing during mining life. The properties of waste-backfilled materials may significantly support the behavior of the surrounding rock mass. This study aimed to investigate waste material properties on collapse prevention in underground mine under the backfilling method. Waste materials, regarded as valueless and harmless, used in this study were oyster shell, kaolin tailing, stone dust, and low-grade gypsum. Five different mixtures of backfill material made from different ratios of waste materials, cement, water and interface agents were subjected to slump test and uniaxial compressive strength test performed at 3 different curing times including 8, 16 and 28 days. The results showed that all mixtures were within the standard of the slump test except the one with low-grade gypsum as an ingredient. In addition, the overall trend of compressive strength of the mixtures increased as the curing time increased. The mixture with kaolin tailing exhibited the maximum compressive strength of 6 MPa at curing time of 28 days, whereas that with low-grade gypsum exhibited the lowest compressive strength, twice less than the compressive strength of the mixture with kaolin tailing. The presence of kaolin tailing has a significant impact on strength due to its ability to reduce bubbles inside cement mixtures. Furthermore, increasing in curing time leads to an increase in backfill strength.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของ วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยอุบลราชธานี และคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
Gligoric, Z. and et al. 2015. Underground lead-zinc mine production planning using fuzzy stochastic inventory policy. Archives of Mining Sciences. 60(1): 73-92.
Mijalkovski, S. and et al. 2021. Methodology for underground mining method selection. Mining Science. 28: 201-216.
Mijalkovski, S. and et al. 2021. Mining method selection for underground mining with the application of VIKOR method. Underground Mining Engineering. 39: 11-22.
Ukah, B.U., Igwe, O. and Ubido, O.E. 2022. Modeling and characterization of mine pit backfilling/reclamation materials around Gyel’A’and Kantoma areas of Plateau state using integrated method. Modeling Earth Systems and Environment. 8(3): 3385-3398.
Zhang, Q. and et al. 2015. Design and application of solid, dense backfill advanced mining technology with two pre-driving entries. International Journal of Mining Science and Technology. 25(1): 127-132.
Sahu, H., Prakash, N. and Jayanthu, S. 2015. Underground mining for meeting environmental concerns–a strategic approach for sustainable mining in future. Procedia Earth and Planetary Science. 11: 232-241.
Sivakugan, N., Veenstra, R. and Naguleswaran, N. 2015. Underground mine backfilling in Australia using paste fills and hydraulic fills. International Journal of Geosynthetics and Ground Engineering. 1: 1-7.
Li, B. and et al. 2020. Surface subsidence control during deep backfill coal mining: A case study. Advances in Civil Engineering. 2020: 6876453.
Chang, Q. and et al. 2014. Implementation of paste backfill mining technology in Chinese coal mines. The Scientific World Journal. 2014: 821025.
Turuallo, G., Mallisa, H. and Rupang, N. 2020. Sustainable development: using stone dust to replace a part of sand in concrete mixture. MATEC Web of Conferences. 331: 05001.
Zhang, Q. and et al. 2012. Backfilling technology and strata behaviors in fully mechanized coal mining working face. International Journal of Mining Science and Technology. 22(2): 151-157.
Hustrulid, W.A. and Bullock, R.L. 2001. Underground Mining Methods: Engineering Fundamentals and International Case Studies. Littleton: Society for Mining, Metallurgy & Exploration.
Potvin, Y., Thomas, E. and Fourie, A. 2005. Handbook on Mine Fill. Crawley: Australian Centre for Geomechanics.
Zhang, J. and et al. 2019. Properties and application of backfill materials in coal mines in China. Minerals. 9(1): 53.
Grice, T. 1998. Underground mining with backfill. In: Proceedings of the 2nd Annual Summit-Mine Tailings Disposal System, 24-25 November 1998. Brisbane, Australia.
Belem, T. and et al. 2016. Gravity-driven 1-D consolidation of cemented paste backfill in 3-m-high columns. Innovative Infrastructure Solutions. 1: 37.
Belem, T. and Benzaazoua, M. 2008. Design and application of underground mine paste backfill technology. Geotechnical and Geological Engineering. 26: 147-174.