การทดสอบทางประสาทสัมผัสและคุณภาพทางจุลชีววิทยาของน้ำพริกเผาและน้ำพริกแกงของพริก 5 ชนิด

Main Article Content

ธนาวดี ก่ออานันต์
กาญจนา มะธุรส
ชนิตา รุธิรบริสุทธิ์

บทคัดย่อ

การศึกษาคุณภาพของน้ำพริกเผาและน้ำพริกแกงที่เตรียมจากพริก 5 ชนิด ได้แก่ พริกชี้ฟ้า พริกจินดา พริกขี้หนู พริกหวานแดง และพริกหวานเหลือง พบว่า การผัดและทอดส่วนผสมน้ำพริกเผาที่อุณหภูมิ 170oC ทำให้ค่าสีของน้ำพริกเผาลดลงมากกว่าสีของน้ำพริกแกง น้ำพริกเผามีค่าสี L*, a*, b* ระหว่าง 10.87±0.08 - 33.55±0.01, 9.96±0.01 - 18.28±0.16 และ 12.47±0.00 - 29.69±0.01 ส่วนพริกแกงมีค่าสี L*, a*, b* ระหว่าง 49.52±0.01 - 64.96±0.01, 5.45±0.08 - 27.96±0.00 และ 29.55±0.00 - 46.07±0.07 ตามลำดับ น้ำพริกแกงมีปริมาณฟีนอลิกสูงกว่าพริกเผา โดยมีค่าระหว่าง 5.89±0.10 -  6.30±0.28 และ 5.67±0.26 - 6.03±0.03 ug/mg ตามลำดับ น้ำพริกมีจำนวนจุลินทรีย์ไม่เกินมาตรฐานผลิตภัณฑ์ชุมชน จากการทดสอบทางประสาทสัมผัสด้วยวิธี 9-Point Hedonic scale โดยใช้จำนวนผู้ทดสอบ 30 คน พบว่าน้ำพริกเผาพริกจินดาได้รับความชอบโดยรวมมากที่สุด โดยมีคะแนนความชอบโดยรวมเท่ากับ 6.63±0.36 ซึ่งไม่แตกต่างอย่างมีนัยสำคัญ (P > 0.05) กับน้ำพริกเผาพริกชี้ฟ้าซึ่งมีคะแนนความชอบโดยรวมเท่ากับ 6.60±0.20 น้ำพริกแกงพริกขี้หนูได้รับความชอบโดยรวมมากที่สุด โดยมีคะแนน 7.37±0.28 ซึ่งแตกต่างกับพริกแกงที่ใช้พริกชนิดอื่น ๆ การศึกษานี้สนับสนุนการผัดและการทอดส่วนผสมในการทำน้ำพริกเผาในการลดการปนเปื้อนของจุลินทรีย์ในผลิตภัณฑ์น้ำพริก นอกจากนี้ พืชเครื่องเทศส่วนผสมยังมีสารออกฤทธิ์ต้านจุลินทรีย์ที่หลากหลาย ซึ่งจะช่วยลดการปนเปื้อนของจุลินทรีย์ได้อีกด้วย

Article Details

How to Cite
ก่ออานันต์ ธ., มะธุรส ก., & รุธิรบริสุทธิ์ ช. (2021). การทดสอบทางประสาทสัมผัสและคุณภาพทางจุลชีววิทยาของน้ำพริกเผาและน้ำพริกแกงของพริก 5 ชนิด. วารสารวิทยาศาสตร์ลาดกระบัง, 30(2), 90–105. สืบค้น จาก https://li01.tci-thaijo.org/index.php/science_kmitl/article/view/246782
บท
บทความวิจัย

References

U.S. Department of Agriculture (USDA). 2019. Peppers, hot chili, red, raw. Available at: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170106/nutrients. Retrieved 19 February 2021.

มโนวิช เรืองดิษฐ์ และจันทรัตน์ จินดารัศมี. 2547. พริกใครว่าดีแต่เผ็ด. วารสารกรมวิทยาศาสตร์บริการ, 52(164), 1-3. [Manowich Ruengdit and Chantarat Jindarusme. 2004. Bulletin of the Department of Sciences Service, 52(164), 1-3. (in Thai)]

มาตรฐานผลิตภัณฑ์ชุมชน. 2556. น้ำพริกแกง (มผช. 129/2556). สำนักมาตรฐานผลิตภัณฑ์อุตสาหกรรม (สมอ.), กระทรวงอุตสาหกรรม, กรุงเทพฯ, 1-6. [Thai community product standard. 2013. Namprik Kaeng (TCPS. 129/2013). Thai industrial standard institute (TISI), Ministry of industry, Bangkok, 1-6. (in Thai)]

มาตรฐานผลิตภัณฑ์ชุมชน. 2556. น้ำพริกเผา (มผช. 4/2556). สำนักมาตรฐานผลิตภัณฑ์อุตสาหกรรม, กระทรวงอุตสาหกรรม, กรุงเทพฯ, 1-6. [Thai community product standard. 2013. Namprik Phao (TCPS. 4/2013). Thai industrial standard institute (TISI), Ministry of industry, Bangkok, 1-6. (in Thai)]

Lee, G.R., Shin, M.K., Yoon, D.J., Kim, A.R., Yu, R., Park, N.H. and Han, I.S. 2013. Topical application of capsaicin reduces visceral adipose fat by affecting adipokine levels in high-fat diet-induced obese mice. Obesity, 21(1), 115-122.

Rogers, J., Urbina, S.L., Taylor, L.W., Wilborn, C.D., Purpura, M., Jäger, R. and Juturu, V. 2018.Capsaicinoids supplementation decreases percent body fat and fat mass: adjustment using covariates in a post hoc analysis. BMC Obesity, 5(22). 1-10.

Chaiyasit, K., Khovidhunkit, W. and Wittayalertpanya, S. 2009. Pharmacokinetic and the effect of capsaicin in Capsicum frutescens on decreasing plasma glucose level. Journal of the Medical Association of Thailand, 92(1), 108-13.

Yoshioka, M., St-Pierre, S., Drapeau, V., Dionne, I., Doucet, E., Suzuki, M. And Tremblay, A. 1999. Effects of red pepper on appetite and energy intake. British Journal of Nutrition, 82(2), 115-123.

Nascimento, P.L.A., Nascimento, T.C.E.S., Ramos, N.S.M., Silva, G.R., Gomes, J.E.G., Falcao, R.E.A., Moreira, K.A., Porto, A.L.F. and Silva, T.M.S. 2014. Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta). Molecules, 19(4), 5434–5447.

Sricharoen, P., Lamaiphan, N., Patthawaro, P., Limchoowong, N., Techawongstien, S. and Chanthai, S. 2017. Phytochemicals in capsicum oleoresin from different varieties of hot chilli peppers with their antidiabetic and antioxidant activities due to some phenolic compounds. Ultrasonics Sonochemistry, 38, 629-639.

Pramanik, K. C., Boreddy, S. R. and Srivastava, S. K. 2011. Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PloS one, (65), e20151. https://doi.org/10. 1371/journal.pone.0020151.

Lu, H.F., Chen, Y.L., Yang, J.S., Yang, Y.Y., Liu, J.Y., Hsu, S.C., Lai, K.C. and Chung, J.G. 2010. Antitumor activity of capsaicin on human colon cancer cells in vitro and colo 205 tumor xenografts in vivo. Journal of Agricultural and Food Chemistry, 58(24), 12999-13005.

Thoennissen, N.H., O' kelly, J., Lu, D., Iwanski, G.B., La, D.T., Abbassi, S., Leiter, A., Karlan, B., Mehta, R. and Koeffler, H. P. 2010. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and-negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene, 29(2), 285-296.

Lin, C.H., Lu, W.C., Wang, C.W., Chan, Y.C. and Chen, M.K. 2013. Capsaicin induces cell cycle arrest and apoptosis in human KB cancer cells. BMC Complementary and Alternative Medicine, 13(46). https://doi.org/10.1186/1472-6882-13-46.

Tang, K., Zhang, X. and Guo, Y. 2020. Identification of the dietary supplement capsaicin as an inhibitor of Lassa virus entry. Acta Pharmaceutica Sinica B, 10(5), 789-798.

Peryam, D.R. and Pilgrim, F.J. 1957. Hedonic scale method of measuring food preferences. Food Technology, 11, Suppl., 9–14.

Sobhi, B., Noranizan, M., Karim, A.S., Abdul Rahman, R., Bakar, J. and Ghazali, Z. 2012. Microbial and quality attributes of thermally processed chili shrimp paste. International Food Research Journal, 19(4), 1705-1712.

Cheok, C.Y., Sobhi, B., Adzahan, M.N., Bakar, J., Abdul Rahman, R., Karim, M.S., Ghzali, Z. 2017. Physicochemical properties and volatile profile of chili shrimp paste as affected by irradiation and heat. Food Chemistry, 216, 10-18.

Abbeddou, S., Petrakis, C., Pérez Gálvez, A., Kefalas, P., and Hornero Méndez, D. 2013. Effect of Simulated thermo‐degradation on the carotenoids, tocopherols and antioxidant properties of tomato and paprika oleoresins. Journal of the American Oil Chemists' Society, 90(11), 1697-1703.

Harborne, J.B. 1973. Phytochemical Method: A guide to modern techniques of plant analysis. Chapman and Hall, London.

Vermerris W. and Nicholson R. 2008. Families of phenolic compounds and means of classification. In: Phenolic Compound Biochemistry. Springer, Dordrecht.

วันเช็ง สิทธิกิจโยธิน และดวงฤดี เชิดวงศ์เจริญสุข. 2558. ฤทธิ์ต้านอนุมูลอิสระของสารสกัดจากเปลือกหุ้มเมล็ดมะขาม หวานและมะขามเปรี้ยว. วารสารวิทยาศาสตร์บูรพา, 16(1), 47-55. [Wancheng Sittikijyothin and Duangrudee Cherdwongcharoensuk. 2015. Free radical scavenging activity of seed coat extracts of sweet and sour tamarinds. Burapha Science Journal, 16(1), 47-55. (in Thai)]

Lu, X., Wang, J., Al Qadiri, H.M., Ross, C.F., Powers, J.R., Tang, J. and Rasco, B.A., 2011. Determination of total phenolic content and antioxidant capacity of onion (Allium cepa and shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry, 129(2), 637-644.

Beretta, H.V., Bannoud, F., Insani, M., Berli, F., Hirschegger, P., Galmarini, C.R. and Cavagnaro, P.F. 2017. Relationships between bioactive compound content and the antiplatelet and antioxidant activities of six allium vegetable species. Food technology and biotechnology, 55(2), 266-275.

Phan, A.D.T., Netzel, G., Chhim, P., Netzel, M.E. and Sultanbawa, Y. 2019. Phytochemical characteristics and antimicrobial activity of Australian grown garlic (Allium sativum L.)

cultivars. Foods, 8(9), 358.

Mahae, N. and Chaiseri, S. 2009. Antioxidant activities and antioxidative components in extracts of Alpinia galanga (L.) Sw. Agriculture and Natural Resources, 43(2), 358-369.

Baradwaj, R.G., Rao, M.V. and Kumar, T.S., 2017. Novel purification of 1’S-1’-acetoxychavicol acetate from Alpinia galanga and its cytotoxic plus antiproliferative activity in colorectal adenocarcinoma cell line SW480. Biomedicine and Pharmacotherapy, 91, 485-493.

Chatterjee, S., Niaz, Z., Gautam, S., Adhikari, S., Variyar, P.S. and Sharma, A. 2007. Antioxidant activity of some phenolic constituents from green pepper (Piper nigrum L.) and fresh nutmeg mace (Myristica fragrans). Food Chemistry, 101(2), 515-523.

Variyar, P.S, Pendharkar, M.B., Banerjee, A. and Bandyopadhyay, C. 1988. Blackening in green pepper berries. Phytochemistry, 27(3), 715-717.

Reddy, S.V., Srinivas, P.V., Praveen, B., Kishore, K.H., Raju, B.C., Murthy, U.S. And Rao, J.M. 2004. Antibacterial constituents from the berries of Piper nigrum. Phytomedicine, 11(7-8), 697-700.

Dosoky, N.S., Satyal, P., Barata, L.M., Da Silva, J.K.R. and Setzer, W.N. 2019. Volatiles of Black Pepper Fruits (Piper nigrum L.). Molecules, 24(23), 4244. https://doi.org/ 10.3390/molecules24234244.

Bettaieb, I., Bourgou, S., Wannes, W.A., Hamrouni, I., Limam, F. and Marzouk, B. 2010. Essential oils, phenolics, and antioxidant activities of different parts of cumin (Cuminum cyminum L.). Journal of Agricultural and Food Chemistry, 58(19), 10410-10418.

Rebey, I.B., Kefi, S., Bourgou, S., Ouerghemmi, I., Ksouri, R., Tounsi, M.S. and Marzouk, B.2014.Ripening stage and extraction method effects on physical properties, polyphenol composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Plant Foods for Human Nutrition, 69(4), 358-364.

Msaada, K., Jemia, M.B., Salem, N., Bachrouch, O., Sriti, J., Tammar, S., Bettaieb, I., Jabri, I., Kefi, S., Limam, F. and Marzouk, B. 2017. Antioxidant activity of methanolic extracts from three coriander (Coriandrum sativum L.) fruit varieties. Arabian Journal of Chemistry, 10, S3176-S3183.

Dung, N.T., Duc, T.H. and Thanh, N.D.B. 2018. Experimental and modeling studies of vietnam lemongrass essential oil extraction process using response surface methodology. Vietnam Journal of Science and Technology, 56(2A), 11-16.

Abirami, A., Nagarani, G. and Siddhuraju, P., 2014. In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits., Food Science and Human Wellness, 3, 16-25.

Sadasivam, M., Kumarasamy, C., Thangaraj, A., Govindan, M., Kasirajan, G., Vijayan, V., Devadasan. V., Chia-Her, L., Madhusudhanan, G.R., Ramaraj, T. and Subramaniam M. P. 2018. Phytochemical constituents from dietary plant Citrus hystrix. Natural Product Research, 32(14), 1721-1726.

Alagarsamy, S., Chellappan, P., Jesuraj, M.T., Mohan, M.S.G. and Balakrishnan, R., 2018. Phytochemical analysis and antioxidant potential of the crude extract of Allium oschaninii scape. Oriental Pharmacy and Experimental Medicine, 18(4), 309-316.

Yadav, S., Trivedi, N.A. and Bhatt, J.D. 2015. Antimicrobial activity of fresh garlic juice: An in vitro study. An International Quarterly Journal of Research in Ayurveda, 36(2), 203-207.

Strika, I., Basic, A.B. and Halilović, N. 2017. Antimicrobial effects of garlic (Allium sativum L.). Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 47(7), 17-20.

Ulhaq, Z.S., Hendyatama, T.H., Hameed, F. and Santosaningsih, D. 2021. Antibacterial activity of Citrus hystrix toward Salmonella spp. infection. Enfermedades Infecciosas Y Microbiologia Clinica (English ed.), 39(6), 283-286.

Sreepian, A., Sreepian, P.M., Chanthong, C., Mingkhwancheep, T. and Prathit, P. 2019. Antibacterial activity of essential oil extracted from Citrus hystrix (Kaffir Lime) peels: An in vitro study. Tropical Biomedicine, 36(2), 531-541.

Borusiewicz, M., Trojanowska, D., Paluchowska, P., Janeczko, Z., Petitjean, M.W. and Budak, A. 2017. Cytostatic, cytotoxic and antibacterial activities of essential oil isolated from Citrus hystrix. ScienceAsia, 43(2), 96-106.

Gumgumjee, N.M., Khedr, A. and Hajar, A.S. 2012. Antimicrobial activities and chemical properties of Tamarindus indica L. leaves extract. African journal of microbiology Research, 6(32), 6172-6181.

Doughari, J.H. 2006. Antimicrobial activity of Tamarindus indica Linn. Tropical Journal of Pharmaceutical Research, 5(2), 597-603.

Oonmetta-aree, J., Suzuki, T., Gasaluck, P. and Eumkeb, G. 2006. Antimicrobial properties and action of galangal (Alpinia galanga Linn.) on Staphylococcus aureus. LWT-Food Science and Technology, 39(10), 1214-1220.

สุนิดา เมืองโคตร, ทวีรัตน์ วิจิตรสุนทรกุล, วาริช ศรีละออง, เฉลิมชัย วงษ์อารี และทรงศิลป์ พจน์ ชนะชัย. 2017. ผลของอุณหภูมิการคั่วกระเทียม หอมแดงและพริกแห้ง ต่อฤทธิ์ในการต้านเชื้อรา Aspergillus niger. วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี, 19(3), 88-100. [Sunida Muangkote, Taweerat Vichitsoonthonkul, Varit Srilaong, Chalermchai Wongs-aree and Songsin Photchanachai. 2017. Effect of roasting temperatures of garlic, shallot and dried chili on antifungal activity of Aspergillus niger. Journal of Science and Technology, Ubon Ratchathani University, 19(3), 88-100. (in Thai)]

Fritsch, C.W. 1981. Measurements of frying fat deterioration: a brief review. Journal of the American Oil Chemists’ Society, 58(3), 272-274.

Warner, K.A. 2008. 15 - Food uses for soybean oil and alternatives to trans fatty acids in foods. In Johnson, L. A., White, P. J. and Galloway, R. (Eds.), Soybeans: Chemistry, Production and Utilization, Urbana, Illinois, AOCS Press.

Kozłowska, M. and Gruczynska, E. 2018. Comparison of the oxidative stability of soybean and sunflower oils enriched with herbal plant extracts. Chemical Papers, 72(10), 2607-2615.

Tylewicz, U., Oliveira, G., Alminger, M., Nohynek, L., Dalla Rosa, M. and Romani, S. 2020. Antioxidant and antimicrobial properties of organic fruits subjected to PEF-assisted osmotic dehydration. Innovative Food Science and Emerging Technologies, 62, 102341.

Fito, P., Chiralt, A., Betoret, N., Gras, M., Cháfer, M., Martı́nez-Monzó, J., Andres, A. and Vidal, D. 2001. Vacuum impregnation and osmotic dehydration in matrix engineering: Application in functional fresh food development. Journal of Food Engineering, 49(2), 175-183.

Scott, W.J. 1953. Water relations of Staphylococcus aureus at 30oC. Australian journal of biological sciences, 6(4), 549-564.

Chuaysrinule, C., Mahakarnchanakul, W.and Maneeboon, T. 2020. Comparative study on the effect of temperature and water activity on Aspergillus flavus and Aspergillus carbonarius isolates growth and mycotoxin production on a chili powder medium. Cogent Food and Agriculture, 6(1), 1782097.