ยีสต์แชพเพอโรน Hsp104 และบทบาทในการเพิ่มขยายและขจัด [PSI+] พริออน
Main Article Content
บทคัดย่อ
โมเลกูลาร์แชพเพอโรน Hsp104 หรือกลุ่มโปรตีนฮีทช็อคในยีสต์ Saccharomyces cerevisiae มีหน้าที่สำคัญในการตอบสนองต่อสภาวะอุณหภูมิสูงเพื่อให้เซลล์มีชีวิตรอด โดยส่งเสริมให้โปรตีนที่เสียสภาพมีการม้วนพับที่ผิดปกติและรวมกลุ่มกัน เกิดการม้วนพับใหม่จนกระทั่งกลับมาเป็นโปรตีนในรูปแบบปกติ นอกจากนี้ยังพบว่าโปรตีน Hsp104 มีส่วนช่วยในการคงอยู่และเพิ่มขยายของพริออนภายในเซลล์ยีสต์ พริออนในยีสต์เป็นรูปแบบของโปรตีนที่ผิดปกติหรือมีการม้วนพับที่เปลี่ยนไป แล้วนำไปสู่การรวมกลุ่มกันเป็นโปรตีนโพลีเมอร์ขนาดใหญ่ คล้ายกับพริออนที่พบในมนุษย์ซึ่งสามารถถ่ายทอดจากเซลล์สู่เซลล์ได้ แต่ไม่ทำให้เกิดโรคในยีสต์ มีรายงานการศึกษาในยีสต์ที่มี [PSI+] พริออนพบว่า Hsp104 มีหน้าที่เกี่ยวข้องกับการดึงสายโปรตีนออกเพื่อสร้างเมล็ดพันธุ์ในการเพิ่มขยายและคงอยู่ของพริออนภายในเซลล์ด้วยกลไกการทำงานเดียวกับการช่วยให้เกิดการม้วนพับใหม่ของโปรตีนอื่นในเซลล์ ที่น่าสนใจคือในสภาวะที่มีระดับการแสดงออกของ Hsp104 สูงกว่าปกติส่งผลให้เกิดการขจัด [PSI+] พริออนให้หมดไปจากเซลล์ยีสต์ได้ ด้วยกลไกการทำงานของ Hsp104 ที่ยังไม่ทราบชัดเจน จึงมีความจำเป็นต้องทำความเข้าใจเพิ่มเติมถึงกลไกการทำงานของ Hsp104 ในการเหนี่ยวนำให้ [PSI+] หมดไปจากเซลล์ ซึ่งข้อมูลนี้อาจนำไปสู่การรักษาโรคทางระบบประสาทและสมองในมนุษย์ ที่เกิดจากการรวมกลุ่มของโปรตีนที่มีโครงสร้างไม่ปกติในสมองได้ในอนาคต
Article Details
References
2. Hanson PI, Whiteheart SW. AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol 2005 Jul;6(7):519-529.
3. Schirmer EC, Glover JR, Singer MA, Lindquist S. HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 1996 Aug;21(8):289-296.
4. Dougan DA, Mogk A, Zeth K, Turgay K, Bukau B. AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett 2002 Oct 2;529(1):6-10.
5. Lindquist S, Kim G. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc Natl Acad Sci U S A 1996 May 28; 93(11):5301-5306.
6. Sanchez Y, Taulien J, Borkovich KA, Lindquist S. Hsp104 is required for tolerance to many forms of stress. EMBO J 1992 Jun;11(6):2357-2364.
7. Parsell DA, Sanchez Y, Stitzel JD, Lindquist S. Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature 1991 Sep 19;353(6341):270-273.
8. Doyle SM, Wickner S. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem Sci 2009 Jan;34(1):40-48.
9. Parsell DA, Taulien J, Lindquist S. The role of heat-shock proteins in thermotolerance. Philos Trans R Soc Lond B Biol Sci 1993 Mar 29;339(1289):279-85: 285-6.
10. Ogura T, Whiteheart SW, Wilkinson AJ. Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases. J Struct Biol 2004 Apr-May;146(1-2):106-112.
11. Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 1995 May 12;268(5212):880-884
12. Bosl B, Grimminger V, Walter S. Substrate binding to the molecular chaperone Hsp104 and its regulation by nucleotides. J Biol Chem 2005 Nov 18;280(46):38170-38176.
13. Lum R, Niggemann M, Glover JR. Peptide and protein binding in the axial channel of Hsp104. Insights into the mechanism of protein unfolding. J Biol Chem 2008 Oct 31;283(44):30139-30150.
14. Cashikar AG, Schirmer EC, Hattendorf DA, Glover JR, Ramakrishnan MS, Ware DM, et al. Defining a pathway of communication from the C-terminal peptide binding domain to the N-terminal ATPase domain in a AAA protein. Mol Cell 2002 Apr;9(4):751-760.
15. Bosl B, Grimminger V, Walter S. The molecular chaperone Hsp104--a molecular machine for protein disaggregation. J Struct Biol 2006 Oct; 156(1):139-148.
16. Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 2010 Nov;11(11):777-788.
17. Hattendorf DA, Lindquist SL. Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants. EMBO J 2002 Jan 15;21(1-2):12-21.
18. Lee S, Sowa ME, Choi JM, Tsai FT. The ClpB/Hsp104 molecular chaperone-a protein dis-aggregating machine. J Struct Biol 2004 Apr-May; 146(1-2):99-105.
19. Koo EH, Lansbury PT,Jr, Kelly JW. Amyloid diseases: abnormal protein aggregation in neuro-degeneration. Proc Natl Acad Sci U S A 1999 Aug 31;96(18):9989-9990.
20. Coustou V, Deleu C, Saupe S, Begueret J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci U S A 1997 Sep 2;94(18):9773-9778.
21. Eaglestone SS, Cox BS, Tuite MF. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J 1999 Apr 1;18(7):1974-1981.
22. True HL, Lindquist SL. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 2000 Sep 28;407(6803):477-483.
23. Tuite MF, Staniforth GL, Cox BS. [PSI+] turns 50. Prion 2015;9(5):318-332.
24. Crow ET, Li L. Newly identified prions in budding yeast, and their possible functions. Semin Cell Dev Biol 2011 Jul;22(5):452-459.
25. Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, et al. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 1995 Sep 1;14(17):4365-4373.
26. Partridge L, Barton NH. Evolving evolvability. Nature 2000 Sep 28;407(6803):457-458.
27. Tuite MF, Cox BS. Propagation of yeast prions. Nat Rev Mol Cell Biol 2003 Nov;4(11):878-890.
28. Patino MM, Liu JJ, Glover JR, Lindquist S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 1996 Aug 2;273(5275):622-626.
29. DePace AH, Santoso A, Hillner P, Weissman JS. A critical role for amino-terminal glutamine/ asparagine repeats in the formation and propa-gation of a yeast prion. Cell 1998 Jun 26; 93(7): 1241-1252.
30. Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN. The SUP35 omni-potent suppressor gene is involved in the maintenance of the non-Mendelian determinant [PSI+] in the yeast Saccharomyces cerevisiae. Genetics 1994 Jul;137(3):671-676.
31. Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW. Genesis and variability of [PSI+] prion factors in Saccharomyces cerevisiae. Genetics 1996 Dec;144(4):1375-1386.
32. Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 1997 Oct;147(2):507-519.
33. Liu JJ, Sondheimer N, Lindquist SL. Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+]. Proc Natl Acad Sci U S A 2002 Dec 10;99 Suppl 4:16446-16453.
34. Helsen CW, Glover JR. Insight into molecular basis of curing of [PSI+] prion by overexpression of 104-kDa heat shock protein (Hsp104). J Biol Chem 2012 Jan 2;287(1):542-556.
35. Ter-Avanesyan MD, Kushnirov VV, Dagkesa-manskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG, et al. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 1993 Mar;7(5):683-692.
36. Salas-Marco J, Bedwell DM. GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination. Mol Cell Biol 2004 Sep;24(17):7769-7778.
37. Osherovich LZ, Weissman JS. Multiple Gln/ Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell 2001 Jul 27;106(2):183-194.
38. Suzuki G, Shimazu N, Tanaka M. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 2012 Apr 20;336(6079):355-359.
39. Shorter J, Lindquist S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 2004 Jun 18;304 (5678):1793-1797.
40. Shorter J, Lindquist S. Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. Mol Cell 2006 Aug 4;23(3):425-438.
41. Kononenko AV, Mitkevich VA, Atkinson GC, Tenson T, Dubovaya VI, Frolova LY, et al. GTP-dependent structural rearrangement of the eRF1:eRF3 complex and eRF3 sequence motifs essential for PABP binding. Nucleic Acids Res 2010 Jan;38(2):548-558.
42. Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, et al. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 1995 Aug 15;14(16):4065-4072.
43. Kiktev D, Vechtomov SI, Zhouravleva G. Prion-dependent lethality of sup45 mutants in Saccharomyces cerevisiae. Prion 2007 Apr-Jun;1 (2):136-143.
44. Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, et al. Nucleated confor-mational conversion and the replication of conformational information by a prion determinant. Science 2000 Aug 25;289(5483):1317-1321.
45. Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Propagation of the yeast prion-like [PSI+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 1996 Jun 17;15(12):3127-3134.
46. Tessarz P, Mogk A, Bukau B. Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation. Mol Microbiol 2008 Apr;68(1):87-97.
47. Ness F, Ferreira P, Cox BS, Tuite MF. Guanidine hydrochloride inhibits the generation of prion "seeds" but not prion protein aggregation in yeast. Mol Cell Biol 2002 Aug;22(15):5593-5605.
48. Bagriantsev SN, Gracheva EO, Richmond JE, Liebman SW. Variant-specific [PSI+] infection is transmitted by Sup35 polymers within [PSI+] aggregates with heterogeneous protein compo-sition. Mol Biol Cell 2008 Jun;19(6):2433-2443.
49. Tipton KA, Verges KJ, Weissman JS. In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Mol Cell 2008 Nov 21;32(4):584-591.
50. Doyle SM, Shorter J, Zolkiewski M, Hoskins JR, Lindquist S, Wickner S. Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nat Struct Mol Biol 2007 Feb;14(2):114-122.
51. Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol 1999 Feb;19(2):1325-1333.
52. Hung GC, Masison DC. N-terminal domain of yeast Hsp104 chaperone is dispensable for thermotolerance and prion propagation but necessary for curing prions by Hsp104 overexpression. Genetics 2006 Jun;173(2):611-620.
53. Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD, Kushnirov VV. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J Biol Chem 2003 Dec 5;278(49):49636-49643.
54. Winkler J, Tyedmers J, Bukau B, Mogk A. Chaperone networks in protein disaggregation and prion propagation. J Struct Biol 2012 Aug; 179(2):152-160.
55. Moosavi B, Wongwigkarn J, Tuite MF. Hsp70/Hsp90 co-chaperones are required for efficient Hsp104-mediated elimination of the yeast [PSI+] prion but not for prion propagation. Yeast 2010 Mar;27(3):167-179.
56. Reidy M, Masison DC. Sti1 regulation of Hsp70 and Hsp90 is critical for curing of Saccharomyces cerevisiae [PSI+] prions by Hsp104. Mol Cell Biol 2010 Jul;30(14):3542-3552.
57. Abbas-Terki T, Donze O, Briand PA, Picard D. Hsp104 interacts with Hsp90 cochaperones in respiring yeast. Mol Cell Biol 2001 Nov;21 (22):7569-7575.
58. Wegele H, Haslbeck M, Reinstein J, Buchner J. Sti1 is a novel activator of the Ssa proteins. J Biol Chem 2003 Jul 11;278(28):25970-25976.
59. Song Y, Masison DC. Independent regulation of Hsp70 and Hsp90 chaperones by Hsp70/Hsp90-organizing protein Sti1 (Hop1). J Biol Chem 2005 Oct 7;280(40):34178-34185.
60. Cox B, Ness F, Tuite M. Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics 2003 Sep;165(1):23-33.
61. Ness F, Cox BS, Wongwigkarn J, Naeimi WR, Tuite MF. Over-expression of the molecular chaperone Hsp104 in Saccharomyces cerevisiae results in the malpartition of [PSI+] propagons. Mol Microbiol 2017 Apr;104(1):125-143.
62. Erjavec N, Larsson L, Grantham J, Nystrom T. Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev 2007 Oct 1;21(19):2410-2421.
63. Tessarz P, Schwarz M, Mogk A, Bukau B. The yeast AAA+ chaperone Hsp104 is part of a network that links the actin cytoskeleton with the inheritance of damaged proteins. Mol Cell Biol 2009 Jul; 29(13):3738-3745.
64. Liu B, Larsson L, Caballero A, Hao X, Oling D, Grantham J, et al. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 2010 Jan 22;140(2):257-267.
65. Wongwigkarn J. Exploring the role of the molecular chaperone Hsp104 in yeast [PSI+] prion propagation and transmission [doctoral 's thesis]. Canterbury, UK: University of Kent; 2013.
66. Alberti S, Halfmann R, King O, Kapila A, Lindquist S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 2009 Apr 3;137(1):146-158.
67. Alberti S. Molecular mechanisms of spatial protein quality control. Prion 2012 Nov-Dec;6(5):437-442.
68. Greene LE, Zhao X, Eisenberg E. Curing of [PSI+] by Hsp104 Overexpression: Clues to solving the puzzle. Prion 2018 Jan 2;12(1):9-15.
69. Shorter J Hsp104: a weapon to combat diverse neurodegenrative disorders. Neurosignals 2008; 16(1):63-74.