ความสัมพันธ์แบบกรีนของโคไฮเพอร์ซับสติวชันเชิงเส้นชนิด \tau = (n)

Main Article Content

Julaluk Boonsol

บทคัดย่อ

Linear cohypersubstitutions of type gif.latex?\tau = (n) are mappings which map the n-ary co-operation symbols to linear coterms of type gif.latex?\tau. Every linear cohypersubstitution gif.latex?\sigma of type gif.latex?\tau = (n) induces a mapping gif.latex?\hat{\sigma} on the set of all linear coterms of type gif.latex?\tau. The set of all linear cohypersubstitutions of type gif.latex?\tau under the binary operation gif.latex?\circ_{coh} which is defined by gif.latex?\sigma_1&space;\circ_{coh}&space;\sigma_2&space;:=&space;\hat{\sigma}_1&space;\circ&space;\sigma_2 for all gif.latex?\sigma_1,&space;\sigma_2&space;\in&space;Cohyp^{lin}(n) forms a monoid. In this paper, we characterize Green’s relations on  gif.latex?Cohyp^{lin}(n).

Article Details

บท
บทความวิจัย

References

[1] Boonchari D, Saengsura K. Monoid of
Cohypersubstitutions of type Thai
Journal of Mathematics. 2016;14:191-201.
[2] Csa’ka’ny B. Completeness in coalgebras. Acta
Sci. Math. 1985;48:75-84.
[3] Denecke K. The partial clone of linear terms.
Siberian Mathematical Journal. 2016:57(4):589-
598
[4] Denecke K, Lau D, Poschel R, Schweigert D.
Hyperidentities, hyperequational classes and
clone congruences. Contribution to General
Algebra. 2002;7:97-118.
[5] Denecke K, Saengsura K. Cohyperidentities and
M-solid classes of coalgebras. Discrete
Mathematics. 2009;304(4):772-783.
[6] Denecke K, Saengsura K. Menger Algebras and
Clones of Cooperations. Algebra Colloquium.
2008;15(2):223-234.
[7] Denecke K, Wismath SL. Universal algebra and
applications in theoretical computer science.
Boca Raton, Chapman&Hall/CRC. 2002.
[8] Drbohlav K. On quasicovarieties. Acta Fac.
Rerum Natur. Univ. Comenian. Math.
Mimoriadne Cislo. 1971;17-20.
[9] Howie JM. Fundamentals of Semigroup Theory.
Oxford Science Publications, Clarendon Press.
Oxford. 1995.
[10] Jermjitporn S, Saengsura N. Generalized
cohypersubstitutions of type Thai
Journal of Mathematics. 2013;4:747-755.
[11] Koppitz J, Denecke K. M-solid varieties of
algebras. Springer Science+Business Media.
Inc. 2006.
[12] Leeratanavalee S, Denecke K. Generalized
hypersubstitutions and strongly solid varieties.
Proceedings of the “59th Workshop on General
Algebra”, Conference for Young Algebraists.
Potsdam. 200;135-145.