The performance comparison of data mining techniques for patient incidence

Main Article Content

Ukrit Srisuk

Abstract

This research aim to study the efficacy of data mining techniques in a wide variety of data. The data in this research contains data of patients with breast cancer. Diabetics And patients with hyperthyroidism. All data were collected from 3 UCI databases. This research, five data mining techniques were used including. Decision Tree C4.5, Naive Bayes, Neural Networks, Random Forest, Deep Learning techniques to create prediction models of simulated for prognosis of disease Breast cancer, diabetes and hypothyroidism. In order to measure the performance of prediction models, 10-fold cross validation was utilized to divide the data into training and testing sets. Accuracy, sensitivity and specificity of the prediction models. were used to compare the prediction performance of each model. The extremal results showed that the Decision Tree technique was the best technique in modeling the prognosis of hypothyroidism. It provides 99.86 % accuracy, 99.85 % sensitivity and 100 % specificity.

Article Details

Section
Original Articles

References

1. ณัฏฐพร นันทิวัฒนา. (25/9/2020). มะเร็งเต้านม. Available: https://www.sikarin.com/content/detail/461/%E0%B9%82%E0%B8%A3%E0%B8%84%E0%B8%A1%E0%B8%B0%E0%B9%80%E0%B8%A3%E0%B9%87%E0%B8%87%E0%B9%80%E0%B8%95%E0%B9%89%E0%B8%B2%E0%B8%99%E0%B8%A1-%E0%B8%A1%E0%B8%B0%E0%B9%80%E0%B8%A3%E0%B9%87%E0%B8%87%E0%B8%AD%E0%B8%B1%E0%B8%99%E0%B8%94%E0%B8%B1%E0%B8%9A-1-%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B8%9C%E0%B8%B9%E0%B9%89%E0%B8%AB%E0%B8%8D%E0%B8%B4%E0%B8%87
2. พิมพ์ใจ อันทานนท์. (11/6/2020). โรคเบาหวาน. Available: https://www.dmthai.org/index.php/knowledge/for-normal-person/health-information-and-articles/health-information-and-articles-old-3/846-2019-04-20-01-49-18
3. เมดไทย. (11/6/2020). ไทรอยด์เป็นพิษ (ไฮเปอร์ไทรอยด์) อาการ, สาเหตุ, การรักษา ฯลฯ. Available: https://medthai.com/%E0%B9%84%E0%B8%97%E0%B8%A3%E0%B8%AD%E0%B8%A2%E0%B8%94%E0%B9%8C%E0%B9%80%E0%B8%9B%E0%B9%87%E0%B8%99%E0%B8%9E%E0%B8%B4%E0%B8%A9/
4. G. Schuh, J.-P. Prote, and P. Hünnekes, "Data mining methods for macro level process planning," Procedia CIRP, vol. 88, pp. 48-53, 2020/01/01/ 2020.
5. F. Qi, Z. Chang-jie, and Y. Liu, "Predicting breast cancer recurrence using data mining techniques," in 2010 International Conference on Bioinformatics and Biomedical Technology, 2010, pp. 310-311.
6. V. R. Balpande and R. D. Wajgi, "Prediction and severity estimation of diabetes using data mining technique," in 2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), 2017, pp. 576-580.
7. ชณิดาภา บุญประสม. (25/9/2020). การวิเคราะห์การทํานายการลาออกกลางคันของนักศึกษาระดับปรญญาตรีโดยใช้เทคนิควิธีการทําเหมืองข้อมูล. Available: http://research.fte.kmutnb.ac.th/download.php?filename=620701000056&filepath=20190701155744.pdf
8. A. G. Maninder Kaur. A Framework for the Indirect Assessment Tool for Outcome Based Education Using Data Mining. Available: https://ieeexplore.ieee.org/document/8782336
9. ทิพย์หทัย ทองธรรมชาติ. (26/9/2020). การคัดเลือกคุณลักษณะเพื่อสร้างโมเดลส าหรับการพยากรณ์ผลสัมฤทธิ์ทางการเรียน
ด้วยเทคนิคเหมืองข้อมูล. Available: https://research.kpru.ac.th/sac/fileconference/10912018-05-01.pdf
10. M. Rastgou, H. Bayat, M. Mansoorizadeh, and A. S. Gregory, "Estimating the soil water retention curve: Comparison of multiple nonlinear regression approach and random forest data mining technique," Computers and Electronics in Agriculture, vol. 174, p. 105502, 2020/07/01/ 2020.
11. A. Dogan and D. Birant, "Machine learning and data mining in manufacturing," Expert Systems with Applications, vol. 166, p. 114060, 2021/03/15/ 2021.