Selection of optimal wall materials for microencapsulation of protein isolate from Cordyceps militaris with Maltodextrin and β-Cyclodextrin
Main Article Content
Abstract
We report the study of the microencapsulation processes of a protein isolate from Cordyceps militaris using spray drying technique. Maltodextrin (MD), β-cyclodextrin (β-CD) and maltodextrin mixed with β-cyclodextrin (MD:β-CD) at ratio of 1:1, 1:2 and 2:1 (weight/weight) and the ratio of protein isolate to wall material of 1:4 (weight/weight) were used as experimental variables. Physicochemical properties of microencapsulated powder, i.e., yield percentage, color value, water activity, encapsulation efficiency, solubility, chemical composition, total phenolic content, DPPH and ABTS radical activities were investigated. Protein isolates encapsulated with MD1:β-CD2 had the highest yield percentage and protein content of 73.89 % and 16.75 %. However, β-CD-encapsulated had the highest encapsulation efficiency and solubility of 89.44% and 95.67%, respectively. In addition, all treatments of microencapsulated powder had water activity, lightness (L*), redness (a*) and yellowness (b*), and total color difference (∆E*) values in the range of 0.21-0.25, 74.74-79.20, 7.32-8.65, 35.59-41.52 and 38.94-46.21, respectively. β-CD encapsulated protein isolate powder had the highest total phenolic content of 101.45 mg GAE/g sample, but MD1:β-CD2 encapsulated protein powder had the highest ABTS radical scavenging activities of 1536.49 µmol Trolox equivalent/g sample, respectively. Therefore, the protein isolate encapsulated with MD1:β-CD2 with its high yield percentage and antioxidant activity, represents an optimal microencapsulation process for Cordyceps militaris.
Article Details
References
Akbarbaglu, Z., Peighambardoust, S. H., Sarabandi, K., & Jafari, S. M. (2021). Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chemistry, 359, 129965.
AOAC, (2000). Official methods of analysis of AOAC international. Association of Official Analytical Chemists.
Binsan, W., Benjakul, S., Visessanguan, W., Roytrakul, S., Tanaka, M., & Kishimura, H. (2008). Antioxidative activity of Mungoong, an extract paste, from the cephalothorax of white shrimp (Litopenaeus vannamei). Food Chemistry, 106(1), 185-193.
Ćujić Nikolić, N., Žilić, S., Simić, M., Nikolić, V., Živković, J., Marković, S., & Šavikin, K. (2023). Microencapsulates of blue maize polyphenolics as a promising ingredient in the food and pharmaceutical industry: characterization, antioxidant properties, and in vitro-simulated digestion. Foods, 12(9), 1870.
Derbyshire, E. J., & Delange, J. (2021). Fungal protein-what is it and what is the health evidence? A systematic review focusing on mycoprotein. Frontiers in Sustainable Food Systems, 5, 581682.
Dobroslavić, E., Elez Garofulić, I., Zorić, Z., Pedisić, S., Roje, M., & Dragović-Uzelac, V. (2023). Physicochemical properties, antioxidant capacity, and bioavailability of Laurus nobilis L. Leaf polyphenolic extracts microencapsulated by spray drying. Foods, 12(9), 1923.
Escobar-Avello, D., Avendaño-Godoy, J., Santos, J., Lozano-Castellón, J., Mardones, C., von Baer, D., Luengo, J., Lamuela-Raventós, R. M., Vallverdú-Queralt, A., & Gómez-Gaete, C. (2021). Encapsulation of phenolic compounds from a grape cane pilot-plant extract in hydroxypropyl beta-cyclodextrin and maltodextrin by spray drying. Antioxidants, 10(7), 1130.
Flores, F., & Caro, M. (2022). Physicochemical, antioxidant, and enzyme inhibitory properties of Bignay (Antidesma bunius L. Spreng) and Duhat (Syzygium cumini L.) extracts microencapsulated with -cyclodextrin. Food Research International, 6, 283-288.
Foo, S. C., Khong, N. M., & Yusoff, F. M. (2020). Physicochemical, microstructure and antioxidant properties of microalgae-derived fucoxanthin rich microcapsules. Algal Research, 51, 102061.
Ghorbanzade, T., Akhavan-Mahdavi, S., Kharazmi, M. S., Ibrahim, S. A., & Jafari, S. M. (2022). Loading of fish oil into β-cyclodextrin nanocomplexes for the production of a functional yogurt. Food Chemistry, 15, 100406.
Grgić, J., Šelo, G., Planinić, M., Tišma, M., & Bucić-Kojić, A. (2020). Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants, 9(10), 923.
Jafari, S. M., Vakili, S., & Dehnad, D. (2019). Production of a functional yogurt powder fortified with nanoliposomal vitamin D through spray drying. Food and Bioprocess Technology, 12(7), 1220-1231.
Kosasu, T., Wongklom, A., & Moonsin, P. (2015). Total phenolics, flavonoids and antioxidant activity of fresh water macroalgae from Ubon Ratchathani, Thailand. Journal of Food Science and Agricultural Technology, 1, 207-210.
Loksuwan, J. (2007). Characteristics of micro-encapsulated -carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloids, 21(5-6), 928-935.
Mahdi, A. A., Mohammed, J. K., Al-Ansi, W., Ghaleb, A. D., Al-Maqtari, Q. A., Ma, M., & Wang, H. (2020). Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying. International Journal of Biological Macro-molecules, 152, 1125-1134.
Maqsoudlou, A., Mahoonak, A. S., Mohebodini, H., & Koushki, V. (2020). Stability and structural properties of bee pollen protein hydrolysate microencapsulated using maltodextrin and whey protein concentrate. Heliyon, 6(5), e03731.
Ministry of Public Health. (2021). Notification of the Ministry of Public Health. Protein from hemp seeds. https://ockt.dtam.moph.go.th.
Mohammed, N. K., Tan, C. P., Manap, Y. A., Muhialdin, B. J., & Hussin, A. S. M. (2020). Spray drying for the encapsulation of oils-A review. Molecules, 25(17), 3873.
Phull, A.-R., Ahmed, M., & Park, H.-J. (2022). Cordyceps militaris as a bio functional food source: pharmacological potential, anti-inflammatory actions and related molecular mechanisms. Microorganisms, 10(2), 405.
Pudziuvelyte, L., Marksa, M., Jakstas, V., Ivanauskas, L., Kopustinskiene, D. M., & Bernatoniene, J. (2019). Microencap-sulation of Elsholtzia ciliata herb ethanolic extract by spray-drying: impact of resistant maltodextrin complemented with sodium caseinate, skim milk, and beta-cyclodextrin on the quality of spray-dried powders. Molecules, 24(8), 1461.
Pudziuvelyte, L., Marksa, M., Sosnowska, K., Winnicka, K., Morkuniene, R., & Bernatoniene, J. (2020). Freeze-drying technique for microencapsulation of Elsholtzia ciliata ethanolic extract using different coating materials. Molecules, 25(9), 2237.
Quan, W., He, W., Qie, X., Chen, Y., Zeng, M., Qin, F., Chen, J. & He, Z. (2020). Effects of -cyclodextrin, whey protein, and soy protein on the thermal and storage stability of anthocyanins obtained from purple-fleshed sweet potatoes. Food chemistry, 320, 126655.
Robinson, H. W. & Hogden, C. G. 1940. The biuret reaction in the determination of serum proteins. 1. A study of the conditions necessary for the production of a stable color which bears a quantitative relationship to the protein concentration. Journal of Biological Chemistry, 135(707-725.
Sarabandi, K., Gharehbeglou, P., & Jafari, S. M. (2020). Spray-drying encapsulation of protein hydrolysates and bioactive peptides: Opportunities and challenges. Drying Technology, 38(5-6), 577-595.
Sarabandi, K., Jafari, S. M., Mahoonak, A. S., & Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules, 140, 59-68.
Sharayei, P., Azarpazhooh, E., & Ramaswamy, H. S. (2020). Effect of microencapsulation on antioxidant and antifungal properties of aqueous extract of pomegranate peel. Journal of Food Science and Technology, 57(2), 723-733.
Siva, S., Li, C., Cui, H., Meenatchi, V., & Lin, L. (2020). Encapsulation of essential oil components with methyl--cyclodextrin using ultrasonication Solubility characterit, DPPH and antibacterial assay. Ultrasonics Sonochemistry, 64, 104997.
Suyalek, S., Jaturonglumlert, S., Amornlerdpison, D., Narkprasom, N., & Narkprasom, K. (2020). Encapsulation of crude extracts from Banana (Musa X paradisca) flowers by spray drying. Burapha Science Journal, 25(2), 448-463.
Takeungwongtrakul, S., & Benjakul, S. (2017). Effect of glucose syrup and fish gelatin on physicochemical properties and oxidative stability of spray-dried micro-encapsulated shrimp oil. Journal of Food Processing and Preservation, 41(3), e12876.
Thai Industrial Standards Institute. (2013). Thai community products standards. Instant Lingzhi or reishi drink. https://tcps. tisi.go.th/pub/ tcps0862_56 (Instant Lingzhi or reishi drink). pdf.
Valková, V., Ďúranová, H., Falcimaigne-Cordin, A., Rossi, C., Nadaud, F., Nesterenko, A., & Kačániová, M. (2022). Impact of freeze-and spray-drying microencapsulation techniques on β-glucan powder biological activity: A comparative study. Foods, 11(15), 2267.
Villela-Castrejón, J., Acosta-Estrada, B. A., & Gutiérrez‐Uribe, J. A. (2017). Micro-encapsulation of corn wastewater (nejayote) phytochemicals by spray drying and their release under simulated gastrointestinal digestion. Journal of Food Science, 82(7), 1726-1734.
Wu, H. C., Chen, H. M., & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36(9-10), 949-957
Yang, Q., Yin, Y., Yu, G., Jin, Y., Ye, X., Shrestha, A., Liu, W., Yu, W., & Sun, H. (2015). A novel protein with anti-metastasis activity on 4T1 carcinoma from medicinal fungus Cordyceps militaris. International Journal of Biological Macromolecules, 80, 385-391.
Yu, X. Y., Zou, Y., Zheng, Q. W., Lu, F. X., Li, D. H., Guo, L. Q., & Lin, J. F. (2021). Physicochemical, functional and structural properties of the major protein fractions extracted from Cordyceps militaris fruit body. Food Research International, 142, 110211.
Zhang, D. q., Mu, T. h., Sun, H. n., Chen, J. w., & Zhang, M. (2017). Comparative study of potato protein concentrates extracted using ammonium sulfate and isoelectric precipitation. International Journal of Food Properties, 20(9), 2113-2127.