การศึกษา Streptomyces sp. WPN31 ที่แยกได้จากดินบริเวณรากต้นเตยหอม (Pandanus amaryllifolius): การสร้างเอนไซม์อะไมเลส เซลลูเลส และไซลาเนส และการตรวจสอบคุณสมบัติการยับยั้งการสร้างไบโอฟิล์ม

Main Article Content

วรรณิกา ปะนา
พงศกร กันทะ
นภัสสร สันตะพันธ์
วิศรุต ศรีศักดิ์วรางกูร
นวรัตน์ นันทพงษ์

บทคัดย่อ

     ไบโอฟิล์มเป็นสารที่ซับซ้อน ซึ่งหลั่งออกมาจากเชื้อจุลินทรีย์และสามารถเกาะติดกับพื้นผิวได้ ก่อให้เกิดการปนเปื้อนในเนื้อเยื่อของสิ่งมีชีวิต สิ่งแวดล้อม โรงงานอุตสาหกรรม และอุปกรณ์ทางการแพทย์ และยังเป็นปัจจัยที่สำคัญในการดื้อยาปฏิชีวนะของเชื้อจุลินทรีย์ การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อตรวจสอบความสามารถของเชื้อ Streptomyces sp. WPN31 ที่แยกได้จากดินบริเวณรากต้นเตยหอม ในการสร้างเอนไซม์อะไมเลส เซลลูเลส และไซลาเนส และการยับยั้งการสร้างไบโอฟิล์มของแบคทีเรียก่อโรค โดยผลของยีน 16S rRNA พบว่า WPN31 มีความคล้ายคลึงกับ Streptomyces griseicoloratus (ร้อยละ 98.90) มากที่สุด ซึ่งเป็น streptomycetes สปีชีส์ใหม่ที่แยกได้จากดินในไร่ฝ้าย สาธารณรัฐประชาชนจีน อย่างไรก็ตาม พบว่า Streptomyces sp. WPN31 มีความสามารถในการผลิตเอนไซม์นอกเซลล์ ได้แก่ เอนไซม์อะไมเลส เซลลูเลส และไซลาเนสได้ที่อุณหภูมิ 37 และ 40 องศาเซลเซียส และจากการประเมินการยับยั้งการสร้างไบโอฟิล์มของ Staphylococcus aureus และ Pseudomonas aeruginosa โดยใช้สารส่วนเหนือตะกอนของ WPN31 พบว่า ส่วนเหนือตะกอนมีประสิทธิภาพในการป้องกันการสร้างไบโอฟิล์มของ S. aureus และ P. aeruginosa ดังนั้น การศึกษานี้จึงเป็นการรายงานเบื้องต้นเกี่ยวกับฤทธิ์ในการยับยั้งไบโอฟิล์มของ Streptomyces sp. WPN31 ซึ่งสามารถนำไปประยุกต์ใช้ในอุตสาหกรรมที่หลากหลายได้

Article Details

บท
บทความวิจัย

References

Aka, S. T., & Haji, S. H. (2015). Sub-MIC of antibiotics induced biofilm formation of Pseudomonas aeruginosa in the presence of chlorhexidine. Brazilian Journal of Microbiology, 46(1), 149-154.

Al-Dhabi, N. A., Esmail, G. A., Ghilan, A.-K. M., Arasu, M. V., Duraipandiyan, V., & Ponmurugan, K. (2020). Isolation and purification of starch hydrolysing amylase from Streptomyces sp. Al-Dhabi-46 obtained from the Jazan region of Saudi Arabia with industrial

applications. Journal of King Saud University-Science, 32(1), 1226-1232.

Alam, K., Mazumder, A., Sikdar, S., Zhao, Y. M., Hao, J., Song, C., Wang, Y., Sarkar, R., Islam, S., Zhang, Y., & Li, A. (2022). Streptomyces: The biofactory of secondary metabolites. Front Microbiol, 13, 968053.

Ali, I., Sultan, S., Tahir Mahmood, R., Tariq, M., Shamim, Z., Mushtaq, A., & Asiri, M. (2022). Production and characterization of α-amylase from indigenously isolated Streptomyces sp. BioResources, 18(1), 6-18.

Alotaibi, G. F. (2021). Factors Influencing Bacterial Biofilm Formation and Development. American Journal of Biomedical Science & Research, 12(6), 617-626.

Amorim, E., Castro, E. J. M., da Souza, S. V., Alves, M. S., Dias, L. R. L., Melo, M. H. F., da Silva, I. M. A., Villis, P. C. M., Bonfim, M. R. Q., Falcai, A., Silva, M. R. C., Monteiro-Neto, V., Alianca, A., da Silva, L. C. N., & de Miranda, R. C. M. (2020). Antimicrobial Potential of

Streptomyces ansochromogenes (PB(3)) Isolated From a Plant Native to the Amazon Against Pseudomonas aeruginosa. Frontiers in Microbiology, 11, 574693.

Balasubramanian, S., Othman, E. M., Kampik, D., Stopper, H., Hentschel, U., Ziebuhr, W., Oelschlaeger, T. A., & Abdelmohsen, U. R. (2017). Marine Sponge-Derived Streptomyces sp. SBT343 Extract Inhibits Staphylococcal Biofilm Formation. Front Microbiol, 8, 236.

Biswas, K., Bhattarcharya, D., Saha, M., Mukherjee, J., & Karmakar, S. (2021). Evaluation of antimicrobial activity of the extract of Streptomyces euryhalinus isolated from the Indian Sundarbans. Archives of Microbiology, 204(1), 34.

Castaneda-Cisneros, Y. E., Mercado-Flores, Y., Anducho-Reyes, M. A., Alvarez-Cervantes, J., Ponce-Lira, B., Evangelista-Martinez, Z., & Tellez-Jurado, A. (2020). Isolation and Selection of Streptomyces Species from Semi-arid Agricultural Soils and Their Potential

as Producers of Xylanases and Cellulases. Current Microbiology, 77(11), 3460-3472.

Chanthasena, P., Hua, Y., Rosyidah, A. l., Pathom-Aree, W., Limphirat, W., & Nantapong, N. (2022). Isolation and Identification of Bioactive Compounds from Streptomyces actinomycinicus PJ85 and Their In Vitro Antimicrobial Activities against Methicillin-Resistant Staphylococcus aureus. Antibiotics, 11(12), 1797.

Chanvatik, S., Kosiyaporn, H., Lekagul, A., Kaewkhankhaeng, W., Vongmongkol, V., Thunyahan, A., & Tangcharoensathien, V.

(2019). Knowledge and use of antibiotics in Thailand: A 2017 national household survey. PLoS One, 14(8), e0220990.

Chater, K. F. (2016). Recent advances in understanding Streptomyces. F1000Research, 5, 2795.

de Veras, B. O., dos Santos, Y. Q., Diniz, K. M., Carelli, G. S. C., & dos Santos, E. A. (2018). Screening of protease, cellulase, amylase and xylanase from the salt-tolerant and thermostable marine Bacillus subtilis strain SR60. F1000Research, 7, 1704.

Djemouai, N., Meklat, A., Gaceb-Terrak, R., Youcef, K. O. H., Nacer, A., Saadi, S. A., Saad, S., Verheecke-Vaessen, C., & Bouras, N. (2022). Streptomyces species from the rhizosphere of the medicinal plant Artemisia herba-alba Asso: screening for biological activities.

Biologia, 77(8), 2281-2299.

Donald, L., Pipite, A., Subramani, R., Owen, J., Keyzers, R. A., & Taufa, T. (2022). Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. Microbiology Research, 13(3), 418-465.

Dong, L., Tong, Z., Linghu, D., Lin, Y., Tao, R., Liu, J., Tian, Y., & Ni, L. (2012, May). Effects of sub-minimum inhibitory concentrations of antimicrobial agents on Streptococcus mutans biofilm formation. International Journal of Antimicrobial Agents, 39(5), 390-395.

Flemming, C. H., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8, 623-633.

Hagstrom, A., Pinhassi, J., & Zweifel, U. L. (2000). Biogeographical diversity among marine bacterioplankton AQUATIC MICROBIAL ECOLOGY, 21, 231-244.

Holt, J. G., Krieg, N. R., Sneath, P. H. A., Stanley, J. T., & Williams, S. T. (1994). Bergey’s manual of determinative bacteriology (9ed.). Williams and Wilikins. pp. 518-537.

Kamali, E., Jamali, A., Izanloo, A., & Ardebili, A. (2021). In vitro activities of cellulase and ceftazidime, alone and in combination against Pseudomonas aeruginosa biofilms. BMC Microbiology, 21(1), 347.

Karmakar, M., Lahiri, D., Nag, M., Dutta, B., Dash, S., Sarkar, T., Pandit, S., Upadhye, V. J., & Ray, R. R. (2023). Purification, Characterization, and Application of Endoglucanase from Rhizopus oryzae as Antibiofilm Agent. Applied Biochemistry and Biotechnology, 195(9), 5439-5457.

Khamna, S., Yokota, A., Peberdy, J. F., & Lumyong, S. (2009). Antifungal activity of Streptomyces spp. isolated from rhizosphere of Thai medicinal plants. International Journal of Integrative Biology, 6(3), 143-147.

Kumar, M., Kumar, P., Das, P., Solanki, R., & Kapur, M. K. (2020). Potential applications of extracellular enzymes from Streptomyces spp. in various industries. Arch Microbiol, 202(7), 1597-1615.

Kurnianto, M. A., Kusumaningrum, H. D., & Lioe, H. N. (2020). Characterization of Streptomyces Isolates Associated with Estuarine Fish Chanos chanos and Profiling of Their Antibacterial Metabolites-Crude-Extract. International Journal of Microbiology, 2020, 8851947.

Lakshmi, S. A., Alexpandi, R., Shafreen, R. M. B., Tamilmuhilan, K., Srivathsan, A., Kasthuri, T., Ravi, A. V., Shiburaj, S., & Pandian, S. K. (2022). Evaluation of antibiofilm potential of four-domain alpha-amylase from Streptomyces griseus against exopolysaccharides

(EPS) of bacterial pathogens using Danio rerio. Archives of Microbiology, 204(5), 243.

Lee, J. H., Kim, Y. G., & Lee, J. (2018). Thermostable xylanase inhibits and disassembles Pseudomonas aeruginosa biofilms. Biofouling, 34(3), 346-356.

Leetanasaksakul, K., & Thamchaipenet, A. (2018). Potential anti-biofilm producing marine actinomycetes isolated from sea sediments in Thailand. Agriculture and Natural Resources, 52(3), 228-233.

Li, J., Zhang, L., Yao, G., Zhu, L., Lin, J., Wang, C., Du, B., Ding, Y., & Mei, X. (2022). Synergistic effect of co-culture rhizosphere Streptomyces: A promising strategy to enhance antimicrobial activity and plant growth-promoting function. Frontiers in Microbiology,

, 976484.

Li, Y., Dong, R., Ma, L., Qian, Y., & Liu, Z. (2022). Combined Anti-Biofilm Enzymes Strengthen the Eradicate Effect of Vibrio parahaemolyticus Biofilm: Mechanism on cpsA-J Expression and Application on Different Carriers. Foods, 11(9), 1305.

Lomthong, T., Chorum, M., Samaimai, S., & Thongpoem, P. (2022). Antioxidant and antibacterial activities of Pandanus amaryllifolius Roxb. (Pandanaceae) prop roots and its application for a novel bacterial cellulose (Nata) fermentation by enzymatic hydrolysis. Journal

of Applied Biology & Biotechnology, 10, 147-152.

Mendes, L. W., Raaijmakers, J. M., de Hollander, M., Mendes, R., & Tsai, S. M. (2018). Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J, 12(1), 212-224.

Mihajlovski, K., Buntić, A., Milić, M., Rajilić-Stojanović, M., & Dimitrijević-Branković, S. (2020). From Agricultural Waste to Biofuel: Enzymatic Potential of a Bacterial Isolate Streptomyces fulvissimus CKS7 for Bioethanol Production. Waste and Biomass Valorization, 12(1), 165-174.

Mohammed, K., Roohi, Jamal M., Arif, & Pramod, W. R. (2011). An Overview of Cold-active Microbial α-amylase: Adaptation Strategies and Biotechnological Potentials. Biotechnology, 10, 246-258.

Mukhtar, S., Zaheer, A., Aiysha, D., Malik, K. A., & Mehnaz, S. (2017). Actinomycetes: A Source of Industrially Important Enzymes. Journal of Proteomics & Bioinformatics, 10(12), 316-319.

Nagraj, A. K., & Gokhale, D. (2018). Bacterial Biofilm Degradation Using Extracellular Enzymes Produced by Penicillium janthinellum EU2D-21 under Submerged Fermentation. Advances in Microbiology, 8(9), 687-698.

Newitt, J. T., Prudence, S. M. M., Hutchings, M. I., & Worsley, S. F. (2019). Biocontrol of Cereal Crop Diseases Using Streptomycetes. Pathogens, 8(2), 78.

Nonthakaew, N., Panbangred, W., Songnuan, W., & Intra, B. (2022). Plant growth-promoting properties of Streptomyces spp. isolates and their impact on mung bean plantlets’ rhizosphere microbiome. Frontiers in Microbiology, 13, 967415.

Oberoi, K. J., Momin, T., Ande, R., & Katkar, n. (2020). Inhibition of Bacterial Biofilms by Streptomyces Derived Crude Extract. Journal of Biology and Today’s World, 9(1), 211.

Olanrewaju, O. S., & Babalola, O. O. (2019). Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol, 103(3), 1179-1188.

Park, J. H., Lee, J. H., Kim, C. J., Lee, J. C., Cho, M. H., & Lee, J. (2012). Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Biotechnology Letter, 34(4), 655-661.

Priya, B. S., Stalin T., & Selvam, K. (2012). Efficient utilization of xylanase and lipase producing thermophilic marine actinomycetes Streptomyces albus and Streptomyces hygroscopicus in the production of ecofriendly alternative energy from waste African

Journal of Biotechnology, 11, 14320-14325.

Pumtong, S., Suwannaprom, P., Suttajit, S., Puripunyawanich, N., & Kiatying-Angsulee, N. (2020). Irrational antibiotic use and distribution in the Thai community: a complex situation in need of integrative solution Journal of Health Science, 29, 72-81.

Rodrigues, I. D. S. V., Silva, C. G. S. e., Silva, R. S. d., Dolabella, S. S., Fernandes, M. F., & Fernandes, R. P. M. (2019). Screening of bacterial extracellular xylanase producers with potential for cellulose pulp biobleaching. Acta Scientiarum. Biological Sciences, 41(1).

Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance & Infection Control, 8(1), 76.

Shinde., G. M., & Jadhav., A. G. (2021). Characterization and production of groundnut-shell degrading cellulase of Streptomyces mutabilis. Bulletin of Environment, Pharmacology and Life Sciences, 10(8), 153-159.

Singh, L. S., Shama, H., & Talukdar, N. C. (2014). Production of potent antimicrobial agent by actinomycete, Streptomyces sannanensis strain SU118 isolated from phoomdi in Loktak Lake of Manipur, India BMC Microbiology, 14, 278.

Solihin, J., Waturangi, D. E., & Purwadaria, T. (2021). Induction of amylase and protease as antibiofilm agents by starch, casein, and yeast extract in Arthrobacter sp. CW01. BMC Microbiology, 21(1), 232.

Srinivasan, R., Santhakumari, S., Poonguzhali, P., Geetha, M., Dyavaiah, M., & Xiangmin, L. (2021). Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front Microbiol, 12, 676458.

Tan, L. T.-H., Chan, K.-G., Chan, C. K., Khan, T. M., Lee, L.-H., & Goh, B.-H. (2018). Antioxidative Potential of a Streptomyces sp. MUM292 Isolated from Mangrove Soil. BioMed Research International, 2018, 4823126.

Tingthong, S., Suwanakood, P., Rattanachaikunsopon, P., & Sangswan, J. (2021). Production of Endoglucanases by Streptomyces thermocoprophilus CP1 using Rice Straw as a Substrate. Journal of Pure and Applied Microbiology, 15(4), 1963-1975.

Tresner, H. D., Hayes, J. A., & Backus, E. J. (1966). Streptomyces Prasinosporus sp. nov. a new green-spored species. International Journal of Systematic and Evolutionary Microbiology, 16(2), 161-170.

Vestby, L. K., Grønseth, T., Simm, R., & Nesse, L. L. (2020). Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics (Basel), 9(2), 59.

Viswanathan, K., & Rebecca, J., L. . (2019). Screening of Amylase and Cellulase Enzymes from Marine Actinomycetes. Research Journal of Pharmacy and Technology, 12(8), 3787-3790.

Xie, T. T., Zeng, H., Ren, X. P., Wang, N., Chen, Z. J., Zhang, Y., & Chen, W. (2019). Antibiofilm activity of three Actinomycete strains against Staphylococcus epidermidis. Lett Appl Microbiol, 68(1), 73-80.

Xing, L., Xia, Y. Y., Zhang, Q. Y., Xia, Z. F., Wan, C. X., Zhang, L. L., & Luo, X. X. (2022). Streptomyces griseicoloratus sp. nov., isolated from soil in cotton fields in Xinjiang, China. Archives of Microbiology, 204(5), 254.