A competitive immunosensor for sensitive detection of neomycin residues in raw milk
Main Article Content
Abstract
Neomycin is a common broad-spectrum aminoglycoside antibiotic that inhibits the growth of both gram-negative and gram-positive bacteria. Overdose has the potential to cause ototoxicity as well as nephrotoxicity. Thus, the presence of neomycin in raw milk poses a possible health risk to consumers. Therefore, sensitive and selective methods are necessary to monitor and detect neomycin. A competitive immunosensor was designed to detect neomycin residues in raw milk. First, a microplate was coated with conjugated neomycin-bovine serum albumin and used as an analytical competitor. The competitive immunosensor was created by incubating free neomycin with anti-neomycin antibodies labelled with HRP-streptavidin. After the competitive reaction, captured HRP catalysed the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2) to create colour responses. The proposed immunosensor had excellent analytical performance with a low detection limit of 4 ng/mL, a wide linear range from 1 to 50 ng/mL (R2 = 0.9976), high precision with a %RSD of 3.7, and high selectivity in neomycin detection compared to six competitive antibiotics. The applicability of the sensor was evaluated by analysing neomycin in raw milk samples. Detection of neomycin in real samples demonstrated remarkable accuracy, with a recovery rate of 85–111%. The results showed that the proposed immunosensor can successfully detect neomycin in raw milk samples with excellent sensitivity and ease of use. Additionally, the proposed method has great potential for farmers to detect neomycin residues in raw milk.
Article Details
References
Abualhasan, M. N., Batrawi, N., Sutcliffe, O. B., & Zaid, A. N. (2012). A validated stability-indicating HPLC method for routine analysis of an injectable lincomycin and spectinomycin formulation. Scientia pharma ceutica, 80 (4), 977–986. https://doi.org/10.379/scipharm.1207-13
Arsand, J. B., Jank, L., Martins, M. T., Hoff, R. B., Barreto, F., Pizzolato, T. M., & Sirtori, C. (2016). Determination of amino glycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass spectrometry. Talanta, 154, 38-45. https://doi.org/10.1016/j.talanta.2016.03.045
Beloglazova, N., Shmelin, P., & Eremin, S. (2016). Sensitive immunochemical approaches for quan- titative (FPIA) and qualitative (lateral flow tests) determination of gentamicin in milk. Talanta, 149, 217–224. https://doi.org/10.1016/j.talanta.2015.11.060
Cháfer Pericás, C., Maquieira, Á., & Puchades, R. (2010). Fast screening methods to detect antibiotic residues in food samples. Trends in Analytical Chemistry, 29(9), 1038–1049. https://doi.org/10.1016/j.trac.2010.06.004
Chen, Y., Shang, Y., Wu, X., Qi, Y., & Xiao, X. (2007). Enzyme-linked immunosorbent assay for the detection of neomycin in milk: effect of hapten heterology on assay sensitivity. Food and Agricul- tural Immunology, 18, 117 - 128. https://doi.org/ 10.1080/09540100701579829
Cheubong, C., Sunayama, H., Takano, E., Kitayama, Y., Minami, H., & Takeuchi, T. (2023). A rapid abiotic/biotic hybrid sandwich detection for trace pork adulteration in halal meat extract Nanoscale, 15(37), 15171–15178. https://doi.org/10.1039/d3nr02863a
de-los-Santos-Alvarez, N., Lobo-Castañón, M. J., Miranda-Ordieres, A. J., & Tuñón-Blanco, P. (2009). SPR sensing of small molecules with modified RNA aptamers: detection of neomycin B. Biosensors & bioelec- tronics, 24(8), 2547–2553. https://doi.org/ 10.1016/j.bios.2009.01.011
García-Campaña, A. M., Gámiz-Gracia, L., Lara, F. J., del Olmo Iruela, M., & Cruces-Blanco, C. (2009). Applications of capillary electrophoresis to the determination of antibiotics in food and environmental samples. Analytical and bioanalytical chemistry, 395(4), 967–986. https://doi.org/10.1007 /s00216-009-2867-9
Giang, N.T., & Huan, L.Q. (2021). Developing an electrochemical aptasensor using a specific aptamer to detect neomycin antibiotic in milk. Vietnam Journal of Food Control. 4(3), 239-250. https://doi.org/10.47866/2615 -9252/vjfc.3830
Glinka, M., Wojnowski, W., & Wasik, A. (2020). Determination of aminoglycoside antibiotics: Current status and future trends. Trends in Analytical Chemistry, 131, 116034. https://doi.org/10.1016/j.trac.2020.116034
He, J. J., Wang, Y., & Zhang, X. Y. (2016). Preparation of artificial antigen and development of IgY- based indirect competitive ELISA for the detection of kanamycin residues. Food Analytical Methods, 9(3), 744–751. https://doi.org/10.1007 /s12161-015-0248-x
Ianni, F., Pucciarini, L., Carotti, A., Saluti, G., Moretti, S., Ferrone, V., Sardella, R., Galarini, R., & Natalini, B. (2018). Hydrophilic interaction liquid chromatography of aminoglycoside antibio-tics with a diol-type stationaryphase Analytica chimica acta, 1044, 174–180. https://doi.org/10.1016/j.aca.2018.08.008
Jiang, L., Wei, D., Zeng, K., Shao, J., Zhu, F. & Du, D., 2018. An enhanced direct competitive immunoassay for the detection of kanamycin and tobramycin in milk using multienzyme-particle amplification. Food Analytical Methods, 11, 2066-2075. https://doi.org/10.1007/s12161-018-1185-2
Jin, Y., Jang, J. W., Lee, M. H., & Han, C. H. (2006). Development of ELISA and immuno chromatographic assay for the detection of neomycin. Journal of A Agricultural and Food Chemistry, 364, 260–266. https://doi.org/10.1016/j.cca.2005.07.024
Jospe-Kaufman, M., Siomin, L., & Fridman, M. (2020). The relationship between the structure and toxicity of aminoglycoside antibiotics. Bioorganic & medicinal chemistry letters, 30(13), 127218. https://doi.org/10.1016/j.bmcl.2020.127218
Li, J., Luo, M., Jin, C., Zhang, P., Yang, H., Cai, R., & Tan, W. (2022). Plasmon-Enhanced Electrochemi luminescence of PTP- Decorated Eu MOF-Based Pt-Tipped Au Bimetallic Nanorods for the Lincomycin Assay. ACS applied materials & interfaces, 14(1), 383–389. https://doi.org/10.1021/acsami.1c21528
Lian, W., Liu, S., Yu, J., Li, J., Cui, M., Xu, W., & Huang, J. (2013). Electrochemical sensor using neomycin-imprinted film as recogni- tion element based on chitosan-silvernano-particles/graphene-multiwalled carbonnano- tubes composites modified electrode, Biosensors & bioelectronics, 44, 70–76. https://doi.org/10.1016/j.bios.2013.01.002
Liu, C., Jiang, Y. L., Xiu, L. Y., Qian, R. J., Zhao, M. X., Lou, P. J., Ke, Y. B., Li, G. M., & Jiang, W. X. (2021). Ultratrace analysis of neomycin residues in milk at femtogram levels by flow-through immunoaffinity chroma tography test. Food Analytical Methods, 14(11), 2298–2307. https://doi./10.1007/s12161-021-02058-5
Lu, W., Guo, Y., Yue, Y., Zhang, J., Fan, L., Li, F., Zhao, Y., Dong, C. & Shuang, S., 2023. Smartphone-assisted colorimetric sensing platform based on molybdenum-doped carbon dots nanozyme for visual monitoring of ampicillin. Chemical Engineering Journal, 468, 143615. https://doi.org/10.1016/j.cej.2023.143615
Luan, Y., Wang, N., Li, C., Guo, X., & Lu, A. (2020). Advances in the Application of Aptamer Biosensors to the Detection of Amino-glycoside Antibiotics. Antibiotics,9 (11), 787.http://doi:10.3390/antibiotics9110787
Luo, P. J., Zhang, J. B., Wang, H. L., Chen, X., Wu, N., Zhao, Y. F., Wang, X. M., Zhang, H., Zhang, J. Y., Zhu, L., & Jiang, W. X. (2016). Rapid and sensitive chemiluminescent enzyme immunoassay for the determination of neomycin residues in milk. Biomedical and Environmental Sciences, 29(5), 374–378. https://doi.org/10.3967/bes2016.048
Merola, G., Martini, E., Tomassetti, M., & Campanella, L. (2014). New immunosensor for β-lactam antibiotics determination in river waste waters. Sensors and Actuators B: Chemical, 199, 301-313. https://doi.org/10.1016/j.snb.2014.03.083
Ogier, J. M., Lockhart, P. J., & Burt, R. A. (2020). Intravenously delivered aminoglycoside antibiotics, tobramycin and amikacin, are not ototoxic in mice. Hearing research, 386107870. https://doi.org/10.1016/j.heares.201 9.107870
Pandey, S., Dhanani, J., Lipman, J., Roberts, J. A., Wallis, S. C., & Parker, S. L. (2020). Development and validation of LC-MS/MS methods to measure tobramycin and lincomycin in plasma, microdialysis fluid and urine: application to a pilot pharma cokinetic research study. Clinical chemistry and laboratory medicine, 58(2), 274–284. https:// doi.org /10.1515/cclm-2019-0780
Qin, K., Ding, M., Zhang, C., Zhang, X., Mao, Y., Dang, M., & Zhang, X. (2022). Development of a sensitive monoclonal antibody-based immunochromatographic strip for neomycin detection in milk. Food and Agricultural Immunology, 33(1), 315– 327. https://doi.org/10.1080/09540105.2022.2070606
Rosenberg, C. R., Fang, X., & Allison, K. R. (2020). Potentiating aminoglycoside antibiotics to reduce their toxic side effects. PloS one, 15(9),e0237948. https://doi.org/10.1371/journal.pone.0237948
Salama, I., & Gomaa, M. S. (2013). Comparative determination of miconazole, nystatin, hydrocortisone and neomycin by HPTLC/HPLC-DAD. European journal of Chemistry, 4(1), 29-34. https://doi.org/10. 5155/eurjchem.4.1.29-34.721
Schwarz, S., Kehrenberg, C., & Walsh, T.R. (2016). Use of antimicrobial agents in veterinary medicine and food animal production. Int J Antimicrob Agents, 12, 431–437. https://doi. org/10.1016/s0924-8579(01) 00297-7
Tzanavaras, P. D., & Themelis, D. G. (2007). Review of recent applications of flow injection spectrophotometry to pharmaceutical analysis. Analytica Chimica Acta, 588(1), 1–9. https://doi.org/10.1016 /j.aca.2007.01.060
van Duijkeren, E., Schwarz, C., Bouchard, D., Catry, B., Pomba, C., Baptiste, K. E., Moreno, M. A., Rantala, M., Ružauskas, M., Sanders, P., Teale, C., Wester, A. L., Ignate, K., Kunsagi, Z., & Jukes, H. (2019). The use of aminoglycosides in animals within the EU: development of resistance in animals and possible impact on human and animal health: a review. The Journal of antimicrobial chemotherapy, 74(9), 2480–2496. https://doi.org/10.1093/jac/dkz161
Wang, S., Xu, B., Zhang, Y., & He, J. X. (2009). Development of enzyme-linked immuno-sorbent assay (ELISA) for the detection of neomycin residues in pig muscle, chicken muscle, egg, fish, milk and kidney. Meat science, 82(1), 53–58.
https:// doi.org/10.1016/j.meatsci.12.003
Wang, X., Yang, S., Li, Y., Zhang, J., Jin, Y., Zhao, W., Zhang, Y., Huang, J., Wang, P., Wu, C., & Zhou, J. (2018). Optimization and application of parallel solid-phase extrac-tion coupled with ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of 11 aminoglycoside residues in honey and roya royal jelly. Journal of chromatography. A, 1542,28–36. https://doi.org/10.1016/j.chroma.2018.02.029
Zhang, X. Y., Zhao, F. F., Sun, Y. W., Mi, T. J., Wang, L. Y., Li, Q., Li, J. Y., Ma, W. T., Liu, W. J., Zuo, J. N., Chu, X. Y., Chen, B., Han, W. M., & Mao, Y. X. (2020). Development of a highly sensitive lateral flow immunoassay based on receptor- antibody-amorphous carbon nanoparti-cles to detect 22 β-lactams in milk. Sensors and Actuators B: Chemical, 321, 128458. https://doi.org/10.1016/j.snb.2020.128458
Zhang, Q., He, L. Y., Rani, K. K., Wu, D. Y., Han, J. J., Chen, Y. H., & Su, W. J. (2021). Colorimetric detection of neomycin sulfate in tilapia based on plasmonic core–shell Au@PVP nanoparticles. Food Chemistry, 356, 129612. https://doi.org/10.1016/j.foodchem.2021.129612
Zhu, Y., Son, J. I., & Shim, Y. B. (2010). Amplification strategy based on gold nanoparticle decorated carbon nanotubes for neomycin immunosensors. Biosensors & Bioelectronics, 26(3), 1002–1008. https://doi.org/10.1016/j.bios.2010.08.023
Zu, M., Jiang, J., Zhao, H., Zhang, S., Yan, Y., Qiu, S., Yuan, S., Han, J., Zhang, Y., Guo, W., & Yang, S. (2018). Rapid analysis of neomycin in cochlear perilymph of guinea pigs using disposable SPE cartridges and high performance liquid chroma tography-tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 1093-1094, 52–59. https://doi.org /10.1016/j.jchromb.2018.06.055