Development of a friction stir welding apparatus for aluminum pipe work

Main Article Content

Worapong Boonchouytan
Tuanhafit Tuanding
Sainul-Abeedeen Chea-Ea

Abstract

The development of specialized welder for friction stir welding of pipes is challenging. This is because a number of issues, including decreased contact area resulting from pipe curvature, improper positioning of the pipe clamping device, and pipe welding accessories, etc., frequently arise during friction stir welding of pipes. Therefore, in order to address the issues with pipe welding and enhance the quality of the welds, the objectives of this study were to design and build a friction stir welder for pipes and perform performance tests. The friction stir welder developed in this study was driven by a motor held in a spindle and a vertical milling machine, which was responsible for placement of the friction welder on the bench. This friction stir welder setup contributed to automatic adjustment of welding speed (mm/min) and the rotation speed (rpm). This friction stir welder consisted of 4 main components, which were the welding speed control unit, the dividing plate mounted on the vertical milling machine, a support for the compression during welding of the specimen, and a tailstock. The performance test was conducted using aluminum alloy AA6063 pipe with an outer diameter of 50.8 mm, an inner diameter of 38.85 mm, and a thickness of 5.1 mm at one rotation speed (710 rpm) and three welding speeds (1.5, 2.5 and 3.5 rpm). The welder had a right-hand threaded cylindrical pin with a pitch of 0.8 mm, a diameter of 5 mm, a pin length of 4.8 mm, and a shoulder diameter of 20 mm. The results showed that this welder could be used in the friction stir welding of pipes as intended. The microstructural characterization revealed grain distortion due to excessive frictional heat accumulation in the specimens. The frictional stir welding at a rotation speed of 710 rpm and a welding speed of 2.5 mm/min resulted in the highest tensile strength of 149.65 MPa and the highest hardness of 52.9 HV at the Stir Zone.

Article Details

Section
Original Articles

References

ธีรภัทร์ ยามานนท์. (2558). ปัจจัยความเร็วรอบและความเร็วการเดินเชื่อมของโลหะอลูมิเนียมผสม 6061-T6 ในการเชื่อมแบบหมุนเสียดทาน [วิทยานิพนธ์ปริญญาวิศวกรรมศาสตรมหาบัณฑิต, มหาวิทยาลัยธรรมศาสตร์]. TU Digital Collections. https://10.14457/TU.the.2015.1309

วรพงค์ บุญช่วยแทน. (2567). อุปกรณ์การเชื่อมเสียดทานแบบกวนวัสดุงานท่อ (คำขออนุสิทธิบัตร เลขที่ 2403001645). กรมทรัพย์สินทางปัญญา.

Chen, B., Chen, K., Hao, W., Liang, Z., Yao, J., Zhang, L., & Shan, A. (2015). Friction stir welding of small-dimension Al3003 and pure Cu pipes. Journal of Materials Processing Technology, 223, 48–57. https://doi.org/10.1016/j.jmatprotec.2015.03.044

Doos, Q. M., & Abdul Wahab, B. (2012). Experimental study of friction stir welding of 6061-T6 aluminum pipe. International Journal of Mechanical Engineering and Robotics Research, 1(3), 143–156. https://www.ijmerr.com/show-121-276-1.html

Hattingh, D. G., Von Welligh, L. G., Bernard, D., Susmel, L., Tovo, R., & James, M. N. (2016). Semiautomatic friction stir welding of 38 mm OD 6082-T6 aluminium tubes. Journal of Materials Processing Technology, 238, 255–266. https://doi.org/10.1016/j.jmatprotec.2016.07.027

Ismail, A., Awang, M., Samsudin, H. S., Rojan, A. M., & Jasri, M. (2016). The hardness variation due to secondary heating in friction stir welding of small diameter aluminum alloy 6063 pipe. In J. P. Davim (Ed.), Machining, joining and modifications of advanced materials (pp. 143–152). Springer International Publishing. https://doi.org/10.1007/978-981-10-1082-8_13

Jain, R., Kumari, K., Kesharwani, R. K., Kumar, S., Pal, S. K., Singh, S. B., Panda, S. K., & Samantaray, A. K. (2015). Friction stir welding: Scope and recent development. In J. P. Davim (Ed.), Modern manufacturing engineering (pp. 145–171). Springer International Publishing. https://doi.org/10.1007/978-3-319-20152-8_6

Jamshidi, A. H., & Falahati, N. M. (2017). Orbital friction stir lap welding in tubular parts of aluminium alloy AA5083. Science and Technology of Welding and Joining, 22(7), 562–572. https://doi.org/10.1080/13621718.2016.1275099

Lammlein, D. H., Gibson, B. T., DeLapp, D. R., Cox, C., Strauss, A. M., & Cook, G. E. (2012). The friction stir welding of small-diameter pipe: An experimental and numerical proof of concept for automation and manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(3), 383–398. https://doi.org/10.1177/0954405411402767

Na, S. J., & Lee, H. J. (1996). A study on parameter optimization in the circumferential GTA welding of aluminium pipes using a semi-analytical finite-element method. Journal of Materials Processing Technology, 92–93, 405–409. https://doi.org/10.1016/0924-0136(95)02052-7

Suresh, G., Suman, K. D., Acharyya, S. K., & Sanyal, D. (2023). Friction stir welding of industrial grade AISI 316L and P91 steel pipes: A comparative investigation based on mechanical and metallurgical properties. International Journal of Pressure Vessels and Piping, 201, Article 104865. https://doi.org/10.1016/j.ijpvp.2022.104865