Application of LIDAR technology for monitoring and assessing particulate matter at Kanchanaburi Rajabhat University

Main Article Content

Artit Ruangsri
Phatsaran Laohhapaiboon
Ornnicha Kongwut

Abstract

Air pollution is a significant global environmental issue, profoundly impacting human health, ecosystems, and sustainable economic development. Particularly in densely populated educational institutions, standard measurement methods often face limitations in terms of frequency and spatial coverage. This study, therefore, investigates the consistency of particulate matter (PM2.5 and PM10) measurements between a LIDAR system installed at Kanchanaburi Rajabhat University and data from a Beta Attenuation Monitor operated by the Pollution Control Department located in Pak Phraek Subdistrict, 15 kilometers away. Data were collected from five key points within the university over four months, alongside environmental factors and traffic volume. The findings reveal that the area near the main entrance recorded the highest particulate levels (PM2.5: 28.5 ± 3.2, PM10: 52.3 ± 5.1 μg/m³), while green spaces showed the lowest levels (PM2.5: 17.3 ± 2.0, PM10: 32.8 ± 3.5 μg/m³). Correlation analysis indicates a positive relationship between traffic volume and particulate levels (r = 0.71), whereas wind speed exhibits a negative correlation (r = -0.58). This research contributes to the development of guidelines for effectively applying LIDAR technology in monitoring and managing air quality in educational institutions.

Article Details

Section
Original Articles

References

กรมควบคุมมลพิษ. (2566). รายงานสถานการณ์ฝุ่น PM2.5 2560-2566. กระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม, กรุงเทพมหานคร. https://www.pcd.go.th/wp-content/uploads/2024/06/pcdnew-2024-06-21_06-42-54_474054.pdf.

กลุ่มวิจัยวิทยาศาสตร์บรรยากาศ สดร. (2566). สดร.เผยข้อมูลคาดการณ์ค่าฝุ่น PM2.5 ล่วงหน้าจากเทคโนโลยีไลดาร์. https://www.narit.or.th/index.php/news/1623-narit-pm-2-5-lidar. ค้นเมื่อวันที่ 17 มกราคม 2567.

ชัชชนก รักษ์บางแหลม. (2554) ความสัมพันธ์ระหว่างลักษณะของพื้นที่เมืองกับการเกิดมลพิษทางอากาศฝุ่น PM2.5 ในช่วงพ.ศ. 2553 - 2563 กรณีศึกษา: กรุงเทพมหานคร. [วิทยานิพนธ์สถาปัตยกรรมศาสตรมหาบัณฑิต, จุฬาลงกรณ์มหาวิทยาลัย]. จุฬาลงกรณ์มหาวิทยาลัย

สำนักงานป้องกันและบรรเทาสาธารณภัยจังหวัดกาญจนบุรี. (2567). แผนเผชิญมลพิษจากฝุ่นละอองขนาดเล็ก. แหล่งข้อมูล: https://backofficeminisite.disaster.go.th/upload/userfiles/แผนเผชิญเหตุแก้ไขปัญหาฝุ่นละอองขนาด%2065-66.pdf. ค้นเมื่อวันที่ 17 มกราคม 2567.

Barauskas, D., Pelenis, D., Dzikaras, M., Vanagas, G., Mikolajunas, M., Baltrusaitis, J., & Virzonis, D. (2023). Highly selective capacitive micromachined ultrasonic transducer–based miniature gravimetric CO2 sensor with in-situ calibration for relative humidity. Sensors

and Actuators B: Chemical, 393, 134178. https://doi.org/10.1016/j.snb.2023.134178

Bräuer, P., & D’Agostino, C. (2018). Base adsorption mechanism over zeolite catalysts at different Al contents probed by the tapered element oscillating microbalance (TEOM). Physical Chemistry Chemical Physics, 20(19), 13436–13445. https://doi.org/10.1039/c8cp05001e

Butt, J., Oville, C., Sharma, N. C. P., & Barnes, J. E. (2018). Using a CCD camera lidar system for detection of Asian dust. Proceedings of SPIE, 10779, 107790Z. https://doi.org/10.1117/12.2324551

Canton, H. (2021). World Health Organization—WHO. In The Europa directory of international organizations 2021. Routledge. https://doi.org/10.4324/9781003179900-57

Gujrathi, A. (2021). How immunoprotein diagnostic testing has become beneficial to human body. Clinical Medical Reviews and Reports, 3(5). https://doi.org/10.31579/2690-8794/080

Health Effects Institute. (2024, June 27). New State of Global Air Report finds air pollution is second leading risk factor for death worldwide. https://www.healthdata.org/news-events/newsroom/news-releases/new-state-global-air-report-finds-air-pollution-secondleading

Huang, W. (2022). The update of World Health Organization air quality guidelines and its implications on health risk management in low- and middle-income countries. Global Health Journal, 6(1), 3–5. https://doi.org/10.1016/j.glohj.2022.01.004

Kim, H., Kim, J., & Roh, S. (2023). Effects of gas and steam humidity on particulate matter measurements obtained using light-scattering sensors. Sensors, 23(13), 6199. https://doi.org/10.3390/s23136199

Korotcenkov, G. (2019). Gravimetric humidity sensors (1st ed.). CRC Press. https://doi.org/10.1201/b22370-12

Liu, D., Dai, Y., Hou, Z., & Li, D. (2022). Optimized design for the core components of the oscillating balance dust measuring device. In 2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT) (pp. 278–282). IEEE.

Luo, T., Wang, Z., Zhang, D., Liu, X., Wang, Y., & Yuan, R. (2015). Global dust distribution from improved thin dust layer detection using A-train satellite lidar observations. Geophysical Research Letters, 42(2), 620–628. https://doi.org/10.1002/2014gl062111

McManamon, P. F. (2019). LiDAR receivers. In LiDAR technologies and systems. SPIE Press.

Mifsud, M. D., Sant, T., & Farrugia, R. N. (2018). A comparison of measure-correlate-predict methodologies using LiDAR as a candidate site measurement device for the Mediterranean Island of Malta. Renewable Energy, 127, 230–238. https://doi.org/10.1016/j.renene.2018.05.02

Nations, U. (2017). Sustainable Development Goal 3: Good health and well-being. Africa Sustainable Development Report, 45–63. https://doi.org/10.18356/8f3d4aea-en

Okubo, K., Lagrosas, N., & Shiina, T. (2023). Dust flow distribution measurement by low coherence Doppler lidar. In Springer atmospheric sciences (pp. 143–155). Springer. https://doi.org/10.1007/978-3-031-37818-8_10

Pedelacq, M. E., Garaffo, G., Llanos, E., Venturini, N., & Muniz, P. (2022). Pollution has negative effects on macrozoobenthic trait diversity in a large subtropical estuary. Marine Pollution Bulletin, 184, 114101. https://doi.org/10.1016/j.marpolbul.2022.114101

Seigneur, C. (2019). Air pollution meteorology. In Air pollution: Concepts, theory, and applications. Cambridge University Press. https://doi.org/10.1017/97811086 74614.004

Shukla, K., & Aggarwal, S. G. (2022). A technical overview on beta-attenuation method for the monitoring of particulate matter in ambient air. Aerosol and Air Quality Research, 22(8), 220195. https://doi.org/10.4209/aaqr.220195