Prevalence and diversity of Wolbachia in wild mosquito (Diptera: Culicidae) populations from the lower central Thailand
Main Article Content
Abstract
Mosquitoes are medically important insects, recognized as vectors for many serious diseases. Previous studies have
shownthat mosquitoesoftenharborendosymbioticbacteria, suchas Wolbachia, withintheir cells.Theseendosymbiotic
bacteriaplay vital roles in mosquitobiology, includingtheevolutionof various mosquitospecies. Consequently, humans have utilized Wolbachia to control mosquito populations, thereby reducing the spread of mosquito-borne diseases. However, data regarding the prevalence of Wolbachia symbiosis in mosquito populations in Thailand remains limited. This study aimed to investigate the prevalence and diversity of Wolbachia in mosquito populations inhabiting the lower central region of Thailand. A total of 144 mosquito samples were collected and identified as belonging to four genera and six species: Aedes sp., Ae. albopictus, Anopheles sp., Culex sp., Cx. quinquefasciatus, and Udaya argyrurus. Three mosquito species tested positive for Wolbachia using PCR assays: Ae. albopictus, Culex sp., and Cx. quinquefasciatus. Phylogenetic analysis of the Wolbachia 16S rRNA gene revealed that all strains belonged to supergroup B, with diversity varying among mosquito species. The findings of this research contribute to a better understanding of mosquito evolution influenced by Wolbachia. Furthermore, this knowledge provides a basis for the effective control of these insect vectors.
Article Details
References
Adams, K. L., Abernathy, D. G., Willett, B. C., Selland, E. K., Itoe, M. A., & Catteruccia, F. (2021). Wolbachia cifB induces cytoplasmic incompatibility in the malaria mosquito vector. Nature Microbiology, 6(12), 1575-1582. https://doi.org/10.1038/ s41564-021-00998-6
Ahmad, N. A., Vythilingam, I., Lim, Y. A. L., Zabari, N., & Lee, H. L. (2017). Detection of Wolbachia in Aedes albopictus and their effects on Chikungunya virus. American Journal of Tropical Medicine and Hygiene, 96(1), 148-156. https://doi.org/10.4269/ ajtmh. 16-0516
Ant, T. H., Herd, C., Louis, F., Failloux, A. B., & Sinkins, S. P. (2020). Wolbachia transinfections in Culex quinquefasciatus generate cytoplasmic incompatibility. Insect Molecular Biology, 29(1), 1-8. https:// doi.org/10.1111/imb.12604
Asghar, U., Malik, M. F., Anwar, F., Javed, A., & Raza, A. (2015). DNA extraction from insects by using different techniques: A Review. Advances in Entomology, 3, 132-138.
Bordenstein, S. R., & Werren, J. H. (2000). Do Wolbachia influence fecundity in Nasonia vitripennis? Heredity, 84(1), 54-62. https:// doi.org/10.1046/j.1365-2540.2000.00637.x
Brisco, K. K., Cornel, A. J., Lee, Y., Mouatcho, J., & Braack, L. (2016). Comparing efficacy of a sweep net and a dip method for collection of mosquito larvae in large bodies of water in South Africa. F1000Res, 5, 713. https:// doi.org/10.12688/f1000research.8351.1
Calvitti, M., Moretti, R., Lampazzi, E., Bellini, R., & Dobson, S. L. (2010). Characterization of a new Aedes albopictus (Diptera: Culicidae)-Wolbachia pipientis (Rickettsiales: Rickettsiaceae) symbiotic association generated by artificial transfer of the wPip strain from Culex pipiens (Diptera: Culicidae). Journal of Medical Entomology, 47(2), 179-187. https://doi.org/10.1603/ me09140
Ding, H., Yeo, H., & Puniamoorthy, N. (2020). Wolbachia infection in wild mosquitoes (Diptera: Culicidae): implications for transmission modes and host-endosymbiont associations in Singapore. Parasites & Vectors, 13(1), 612. https:// doi.org/10.1186/s13071-020-04466-8
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research, 32(5), 1792-1797. https://doi.org/10.1093/nar/gkh3 40
Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294-299.
Gomes, F. M., Hixson, B. L., Tyner, M. D. W., Ramirez, J. L., Canepa, G. E., Alves e Silva, T. L., Molina-Cruz, A., Keita, M., Kane, F., Traoré, B., Sogoba, N., & Barillas-Mury, C. (2017). Effect of naturally occurring Wolbachia in Anopheles gambiae s.l. mosquitoes from Mali on Plasmodium falciparum malaria transmission. Proceedings of the National Academy of Sciences, 114(47), 12566-12571. https:// doi.org/10.1073/pnas.1716181114
Li, S.-J., Ahmed, M. Z., Lv, N., Shi, P.-Q., Wang, X.-M., Huang, J.-L., & Qiu, B.-L. (2017). Plantmediated horizontal transmission of Wolbachia between whiteflies. The ISME Journal, 11(4), 1019-1028. https://doi.org/ 10.1038/ismej.2016.164
McCutcheon, J. P., Boyd, B. M., & Dale, C. (2019). The life of an insect endosymbiont from the cradle to the grave. Current Biology, 29(11), R485-R495. https://doi.org/10.1016/ j.cub.2019.03.032
Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37(5), 1530-1534. https://doi.org/ 10.1093/molbev/msaa015
Moreira, L. A., Iturbe-Ormaetxe, I., Jeffery, J. A., Lu, G., Pyke, A. T., Hedges, L. M., Rocha, B. C., Hall-Mendelin, S., Day, A., Riegler, M., Hugo, L. E., Johnson, K. N., Kay, B. H., McGraw, E. A., van den Hurk, A. F., Ryan, P. A., & O'Neill, S. L. (2009a). A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell, 139(7), 1268-1278. https://doi.org/10.1016/j.cell.2009.11.042
Moreira, L. A., Saig, E., Turley, A. P., Ribeiro, J. M. C., O'Neill, S. L., & McGraw, E. A. (2009b). Human probing behavior of Aedes aegypti when infected with a life-shortening strain of Wolbachia. PLOS Neglected Tropical Diseases, 3(12), e568. https://doi.org/10. 1371/journal.pntd.0000568
Pilgrim, J., Thongprem, P., Davison, H. R., Siozios, S., Baylis, M., Zakharov, E. V., Ratnasingham, S., deWaard, J. R., Macadam, C. R., Smith, M. A., & Hurst, G. D. D. (2021). Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. GigaScience, 10(3). https://doi.org/10.1093/gigascience/giab021
Rasgon, J. L., Cornel, A. J., & Scott, T. W. (2006). Evolutionary history of a mosquito endosymbiont revealed through mitochondrial hitchhiking. Proceedings of the Royal Society B: Biological Sciences, 273(1594), 1603-1611. https://doi.org/ 10.1098/rspb.2006.3493
Rattanarithikul, R., Harrison, B. A., Panthusiri, P., & Coleman, R. E. (2005). Illustrated keys to the mosquitoes of Thailand I. Background; geographic distribution; lists of genera, subgenera, and species; and a key to the genera. The Southeast Asian Journal of Tropical Medicine and Public Health, 36 Suppl 1, 1-80.
Rio, R. V. M., Attardo, G. M., & Weiss, B. L. (2016). Grandeur alliances: Symbiont metabolic integration and obligate arthropod hematophagy. Trends Parasitol, 32(9), 739-749. https://doi.org/10.1016/j.pt.2016. 05.002
Sawasdichai, S., Chaumeau, V., Dah, T., Kulabkeeree, T., Kajeechiwa, L., Phanaphadungtham, M., Trakoolchengkaew, M., Kittiphanakun, P., Akararungrot, Y., Oo, K., Delmas, G., White, N. J., & Nosten, F. H. (2019). Detection of diverse Wolbachia 16S rRNA sequences at low titers from malaria vectors in Kayin state, Myanmar. Wellcome Open Research, 4, 11. https://doi.org/10.12688/wellcomeopenres.15005.4
Shimooka, M., Sakurai, Y., Muramatsu, Y., & Uchida, L. (2021). Isolation and characterization of mosquito-associated Spiroplasma cantharicola from Aedes japonicus collected in Hokkaido, Japan. Insects, 12(12). https://doi.org/10.3390/ insects12121056
Sicard, M., Bonneau, M., & Weill, M. (2019). Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes. Current Opinion in Insect Science, 34, 12-20. https://doi.org/ 10.1016/j.cois.2019.02.005
Silva, F. S., Costa-Neta, B. M., de Sousa de Almeida, M., de Araújo, E. C., & Aguiar, J. V. C. (2019). Field performance of a low cost, simple-to-build, non-motorized light-emitting diode (LED) trap for capturing adult Anopheles mosquitoes (Diptera: Culicidae). Acta Tropica, 190, 9-12. https://doi.org/10.1016/j.actatropica.2018.10.014
Suh, E., Mercer, D. R., Fu, Y., & Dobson, S. L. (2009, Dec). Pathogenicity of life-shortening Wolbachia in Aedes albopictus after transfer from Drosophila melanogaster. Applied and Environmental Microbiology, 75(24), 7783-7788. https:// doi.org/10.1128/aem.01331-09
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/ 10.1093/molbev/msab120
Thongprem, P., Evison, S. E. F., Hurst, G. D. D., & Otti, O. (2020). Transmission, tropism, and biological impacts of torix Rickettsia in the common bed bug Cimex lectularius (Hemiptera: Cimicidae). Frontiers in Microbiology, 11, 608763. https://doi.org/ 10.3389/fmicb.2020.608763
Thongwat, D. (2017). Medical mosquitoes of Thailand (Vol. 2). Naresuan University Publishing House. (In Thai)
Werren, J. H., & Windsor, D. M. (2000). Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1450), 1277-1285. https://doi.org/10.1098/rspb.2000.1139
World Health Organization. Regional Office for South-East, A. (2020). Pictorial identification key of important disease vectors in the WHO South-East Asia Region. World Health Organization. Regional Office for South-East Asia. https://iris.who.int/handle/10665/332202
Zabalou, S., Riegler, M., Theodorakopoulou, M., Stauffer, C., Savakis, C., & Bourtzis, K. (2004). Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. PNAS, 101(42), 15042-15045. https://doi.org/10.1073/pnas.04038 53101