ผลของพลาสมาแบบไดอิเล็กทริคแบริเออร์ดิสชาร์จต่อความงอกและความแข็งแรงของเมล็ดพันธุ์ผักกาดหอม (Lactuca sativa)

Main Article Content

มณีรัตน์ สิงหวิบูลย์
ภาณุมาศ ฤทธิไชย
เยาวพา จิระเกียรติกุล
นพพร พูลยรัตน์

Abstract

Plasma technology has been successfully applied to various seeds for improving seed quality. Dielectric barrier discharge (DBD) plasma is one of non-thermal or cold plasma which causes little damage to biological materials. Therefore, the effect of DBD plasma on germination and vigor of lettuce (Lactuca sativa) seeds was examined. Seeds of cos lettuce (L. sativa var. longifolia) “Sweet Green” and leaf lettuce (L. sativa var. crispa) “Green Salad Bowl” were treated to DBD plasma with discharge voltages at 20 and 25 kV for 15, 30, 60, 120 and 240 s comparing to non-DBD plasma treated seeds as control. Results exhibited that DBD plasma at different discharge voltages and durations was unable to promote germination percentage but improved seed vigor of both cultivars. “Sweet Green” seeds exposed to DBD plasma with discharge voltage at 20 kV for 60 s showed the significantly lowest mean germination time as 2.73±0.21 days which was germinated 1.23 days earlier than the control. For “Green Salad Bowl”, seeds subjected to DBD plasma with discharge voltage at 20 kV for all durations revealed the significantly lowest mean germination time as 3.00±0.00 days which was germinated 0.73 days prior to non-DBD plasma treatment. 


Keywords: DBD; plasma; germination; vigor; lettuce seed

Article Details

Section
Biological Sciences
Author Biographies

มณีรัตน์ สิงหวิบูลย์

สาขาวิชาเทคโนโลยีการเกษตร คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

ภาณุมาศ ฤทธิไชย

สาขาวิชาเทคโนโลยีการเกษตร คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

เยาวพา จิระเกียรติกุล

สาขาวิชาเทคโนโลยีการเกษตร คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

นพพร พูลยรัตน์

สาขาวิชาฟิสิกส์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต ตำบลคลองหนึ่ง อำเภอคลองหลวง จังหวัดปทุมธานี 12120

References

[1] Dobrin, D., Magureanu, M., Mandache, N. B. and Ionita, M.D., 2015, The effect of non-thermal plasma treatment on wheat germination and early growth, Innov. Food Sci. Emerg. 29: 255-260.
[2] Butscher, D., Loon, H.V., Waskov, A., von Rohr, P.R. and Schuppler, M., 2016, Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge, Int. J. Food Microbiol. 238: 222-232.
[3] Chirokov, A., Gutsol, A. and Fridman, A., 2005, Atmospheric pressure plasma of dielectric barrier discharges, Pure Appl. Chem. 77: 487-495.
[4] Moreau, M., Orange, N. and Feuilloley, M.G.J., 2008, Non-thermal plasma technology: New tools for bio-decontamination, Biotechnol. Adv. 26: 610-617.
[5] Bussler, S., Herppich, W.B., Neugart, S., Schreiner, M., Ehlbeck, J., Rohn, S. and SchlÜter, O., 2015, Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum ‘Salamanca’), Food Res. Int. 76: 132-141.
[6] ทิพวิมล ไตรกูล, 2557, การพัฒนาเครื่องกำเนิดพลาสมาแบบไดอิเล็กทริคแบริเออร์ดิสชาร์จสำหรับเพิ่มอัตราการงอกของเมล็ดข้าวพันธุ์ปทุมธานี 80 (กข 31), วิทยานิพนธ์ปริญญาโท, มหาวิทยาลัยธรรมศาสตร์, ปทุมธานี, 109 น.
[7] da Silva, A.R.M., Fariasa, M.L., da Silva, D.L.S., Vitorianoa, J.O., de Sousab, R.C. and Alves-Junior, C., 2017, Using atmospheric plasma to increase wettability, imbibition and germination of physically dormant seeds of Mimosa caesalpiniafolia, Colloids Surfaces B. 157: 280-285.
[8] Ling, L., Jiafeng, J., Jiangang, L., Minchong, S., Xin, H., Hanliang, S. and Yuanhua, D., 2014, Effects of cold plasma treatment on seed germination and seedling growth of soybean, Sci. Rep. 4: 5859.
[9] Tong, J., He, R., Zhang, X., Zhan, R., Chen, W. and Yang, S., 2014, Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of Andrographis paniculata, Plasma Sci. Technol. 16: 260-266.
[10] Filatova, I., Azharonok, V., Kadyrov, M., Beljavsky, V., Gvozdov, A., Shik, A. and Antonuk, A., 2011. The effect of plasma treatment of seeds of some grain and legumes on their sowing quality and productivity, Rom. J. Phys. 56: 139-143.
[11] Wien, H.C., 1997, Lettuce, pp. 479-509, In Wien, H.C. (Ed.), The Physiology of Vegetable Crops, CABI Publishing, Wallingford.
[12] ISTA, 2007, International Rules for Seed Testing, International Seed Testing Association, Bassersdorf, Switzerland.
[13] Geneve, R.L., 2005, Vigour Testing in Flower Seeds, pp. 311-332, In McDonald, M.B. and Kwong, F.Y. (Eds.), Flower Seeds Biology and Technology, CABI Publishing, Wallingford.
[14] Ji, S.H., Choi, K.H., Pengkit, A., Im, J.S., Kim, J.S., Kim, Y.H., Park, Y., Hong, E.J., Jung, S.K., Choi, E.H. and Park, G., 2016, Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach, Arch. Biochem. Biophys. 605: 117-128.
[15] Dhayal, M., Lee, S.Y. and Park, S.U., 2006, Using low-pressure plasma for Carthamus tinctorium L. seed surface modification, Vacuum 80: 499-506.