การเปรียบเทียบประสิทธิภาพวิธีการประมาณค่าเบี่ยงเบนมาตรฐานสำหรับการแจกแจงปรกติเมื่อข้อมูลมีค่านอกเกณฑ์

Main Article Content

ภัทรธร บุญยะวาหะ
ณัฏฐ์ชิชา ปรัชญาล้ำเลิศ
เบญจิรา บุญเพชร
จุฑาภรณ์ สินสมบูรณ์ทอง

Abstract

Abstract


The objective of this research was to compare the efficiency of five population standard deviation estimation methods – sample standard deviation (SD), mean absolute deviation (MAD), adjusted range (AR), percentile tab-standard deviation (PSD) and adjusted standard deviation (ASD) methods – for a normal distribution when data set containing outliers. The simulation data in the form of normal distribution with mean ( ) equals 30 and the population standard deviation ( ) equals 1, 5, 10, 15 and 20 were generated by SAS programming. In addition, the sample sizes (n) in this study were determined at 10, 20, 30, 50, 70 and 100, and the percentages of mild outliers were set at 0, 10 and 20 of the sample sizes. The totals of 90 situations were studied. The criteria for efficiency comparison were absolute bias (ABS) and mean square error (MSE). The conclusions of this research were as follows: in the case of no-outliers, adjusted standard deviation (ASD) method was the most efficient estimator for all situations based on considering the amount of ABS. In addition, sample standard deviation (SD) method was the most efficient estimator for all situations based on considering the amount of MSE. However, when the percentages of outliers were contaminated with the data equal 10 and 20, mean absolute deviation (MAD) method tended to have the lowest ABS and MSE for almost all situations. Unless, the percentage of mild outliers was 20 for a sample size of 30 and population standard deviation ( ) was 5, it was found that percentile tab-standard deviation (PSD) method was the most efficient estimator. 


Keywords: standard deviation; normal distribution; absolute bias; mean square error

Article Details

Section
Physical Sciences
Author Biographies

ภัทรธร บุญยะวาหะ

ภาควิชาสถิติ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

ณัฏฐ์ชิชา ปรัชญาล้ำเลิศ

ภาควิชาสถิติ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

เบญจิรา บุญเพชร

ภาควิชาสถิติ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

จุฑาภรณ์ สินสมบูรณ์ทอง

ภาควิชาสถิติ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ แขวงลาดยาว เขตจตุจักร กรุงเทพมหานคร 10900

References

[1] Anscombe, F.J., 1960, Rejection of outliers, J. Amer. Stat. Assoc. Amer. Soc. Qual. 2: 123-147.
[2] Baragona, R., Battaglia, F. and Poli, I., 2011, Outliers, Available Source: http://link.springer.com/chapter/10.1007/978-3-642-16218-3_6?no-access=true, October 6, 2017.
[3] Montgomery, D.C., 2012, Introduction to Statistical Quality Control, 7th Ed., John Wiley, New York.
[4] Woodall, W.H. and Montgomery, D.C., 2000-2001, Using ranges to estimate variability, Qual. Eng. 13(2): 211-217.
[5] Barnett, V. and Lewis, T., 1995, Outlier in Statistical Data, 3th Ed., John Wiley, New York.
[6] Ferguson, T.S., 1961, On the rejection of outliers, pp. 253-287, Neyman, J. (Ed.), Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, California.
[7] Geary, R.C., 1935, The ratio of the mean deviation to the standard deviation as a test of normality, Biometrika 27: 310-332.
[8] Chen, G., 1997, The mean and standard deviation of the run length distribution of X-bar charts when control limits are estimated, Statistica Sinica 7: 789-798.
[9] Leon, H., 1960, Tables of range and studentized range, Ann. Math. Stat. 31(4): 1122-1147.
[10] Hintze, J.L., 2008, Standard deviation estimator, Sample Size Software, NCSS, Kaysville.
[11] Vardeman, S.B., 1999, A brief tutorial on the estimation of the process standard deviation, IIE Transact. 31: 503-507.
[12] Leys, C., Ley, C., Klein, O., Bernard, P. and Licata, L., 2013, Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median, J. Exp. Soc. Psychol. 49: 764-766.
[13] Huber, P.J., 1981, Robust statistics, John Wiley, New York.
[14] พจนานุกรมศัพท์สถิติศาสตร์ ฉบับราชบัณฑิตยสภา, 2558, สำนักพิมพ์คณะรัฐมนตรีและราชกิจจานุเบกษา, กรุงเทพฯ.