จุลินทรีย์ไขมันสูงและวิถีการสังเคราะห์น้ำมัน

Main Article Content

ยาสมี เลาหสกุล

บทคัดย่อ

ความต้องการใช้พลังงานมีแนวโน้มสูงขึ้นส่งผลให้มีการแสวงหาและพัฒนาพลังงานใหม่ทดแทนน้ำมันเชื้อเพลิงจากปิโตรเลียม โดยเฉพาะอย่างยิ่งพลังงานทดแทนน้ำมันดีเซล จุลินทรีย์ไขมันสูง ได้แก่ แบคทีเรียไขมันสูง ยีสต์ไขมันสูง ราไขมันสูงและสาหร่ายไขมันสูง ซึ่งสามารถผลิตและสะสมไขมันในเซลล์ได้มากกว่าร้อยละ 20 ของน้ำหนักเซลล์แห้ง จึงเป็นแหล่งน้ำมันทดแทนที่น่าสนใจเนื่องด้วยไขมันที่ผลิต โดยจุลินทรีย์ไขมันสูงมีคุณสมบัติที่เทียบเท่าน้ำมันพืช แต่จุลินทรีย์ไขมันสูงเจริญรวดเร็ว อัตราการผลิตสูง ใช้พื้นที่เพาะเลี้ยงน้อย และเพิ่มปริมาณการผลิตง่าย นอกจากนี้วิถีการสะสมไขมันของจุลินทรีย์ไขมันสูงประกอบด้วยวิถีดีโนโว (de novo) และเอกส์โนโว (ex novo) จึงทำให้จุลินทรีย์ไขมันสูงสามารถใช้แหล่งอาหารได้กว้างขวางทั้งพวกน้ำตาลชนิดต่างๆ น้ำมันหรือไขมันจากพืชและสัตว์ รวมถึงวัสดุเศษเหลือทางการเกษตรและอุตสาหกรรมเกษตร เช่น เวย์ กากน้ำตาล สารประกอบพอลิแซ็กคาไรด์ เป็นต้น  ด้วยเหตุนี้จุลินทรีย์ไขมันสูงจึงเป็นแหล่งน้ำมันทดแทนที่มีศักยภาพ

Article Details

บท
บทความวิชาการ

References

Abeln, F., Fan, J., Budarin, V. L., Briers, H., Parsons, S., Allen, M. J., Henk, D. A., Clark, J. & Chuck, C. J. (2019). Lipid production through the single-step microwave hydrolysis of macroalgae using the oleaginous yeast Metschnikowia pulcherrima. Algal Research, 38, 101411.

Al-Hawash, A. B., Li, S., Zhang, X., Zhang, X. & Ma, F. (2018). Productivity of γ-Linoleic acid by oleaginous fungus Cunninghamella echinulata using a pulsed high magnetic field. Food Bioscience, 21, 1-7.

Alvarez, H. M., Mayer, F., Fabritius, D. & Steinbuchel, A. (1996). Formation of intracytoplasmic lipid inclusions by Rhodococus opacus strain PD630. Archives of Microbiology, 165, 377-386.

Arous, F., Frikha, F., Triantaphyllidou, I. -E., Aggelis, G., Nasri, M. & Mechichi, T. (2016).Potential utilization of agro-industrial wastewaters for lipid production by the oleaginous yeast Debaryomyces etchellsii. Journal of Cleaner Production, 133, 899-909.

Balasubramanian, R. K., Yen Doan, T. T. & Obbard, J. P. (2013). Factors affecting cellular lipid extraction from marine microalgae. Chemical Engineering Journal, 215-216, 929-936.

Bellou, S., Baeshen, M. N., Elazzazy, A. M., Aggeli, D., Sayegh, F. & Aggelis, G. (2014). Microalgal lipids biochemistry and biotechnological perspectives. Biotechnology Advances, 32(8), 1476-1493.

Beopoulos, A., Chardot, T. & Nicaud, J. M. (2009). Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, 91, 692–696.

Čertík, M., Andráši, P. & Šajbidor, J. (1996). Effect of extraction methods on lipid yield and fatty acid composition of lipid classes containing γ–linolenic acid extracted from fungi. Journal of the American Chemical Society, 73, 357–365.

Cheirsilp, B. & Kitcha, S. (2015). Solid state fermentation by cellulolytic oleaginous fungi for direct conversion of lignocellulosic biomass into lipids: Fed-batch and repeated-batch fermentations. Industrial Crops and Products, 66, 73-80.

Cheirsilp, B., Tippayut, J., Romprom, P. & Prasertsan, P. (2017). Phytoremediation of Secondary Effluent from Palm Oil Mill by Using Oleaginous Microalgae for Integrated Lipid Production and Pollutant Removal. Waste and Biomass Valorization, 8(8), 2889–2897.

Chiu, S. Y.,Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H. & Lin, S. C. (2009). Lipid accumulation and CO2 utilization of Nanocoropsis oculata in respone to CO2 aeration. Bioresource Technology, 100, 833-838.

Cho, H. U. & Park, J. M. (2018). Biodiesel production by various oleaginous microorganisms from organic wastes. Bioresource Technology, 256, 502-508.

Dorval Courchesne, N.M., Parisien, A., Wang, B., & Lan, C.Q. (2009). Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology, 141(1-2), 31-41.

Fakas, S., Marki, A., Mavromati, M., Tselepi, M and Aggelis, G. 2009. Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid stage fermentation. Bioresource Technology, 100, 6118-6120.

Fickers, P., Benetti, P. –H., Wache, Y., Marty, A., Mauerberger, S., Smit, M. S. & Nicaud, J. –M. (2005). Hydrophobic substrate utilization by the yeast Yarrowia lipolytica and its potential application. FEMS Yeast Research, 5, 527-543.

Gardeli, C., Athenaki, M., Xenopoulos, E., Mallouchos, A., Koutinas, A. A., Aggelis, G. & Papanikolaou, S. (2017). Lipid production and characterization by Mortierella (Umbelopsis) isabellina cultivated on lignocellulosic sugars. Journal of Applied Microbiology, 123, 1461-1477.

Gim, G. H. & Kim, S. W. (2019). Growth factors in oceanic sediment significantly stimulate the biomass and lipid production of two oleaginous microalgae. Journal of Applied Phycology, 31(1),49–59.

Goswami, L., Namboodiri, M. M. T., Kumar, R.V., Pakshirajan, K. & Pugazhenthi, G. (2017). Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater. Renewable Energy, 105, 400-406.

Gouda, M. K., Omar, S. H. & Aouad, L. M. (2008). Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World Journal of Microbiology and Biotechnology, 24, 1703-1711.

Hassan, M., Blanc, P. J., Granger, L. M., Pareilleux, A. & Goma, G. (1996). Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochemistry, 31, 355-361.

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. & Darzins, A. (2008). Microalgae triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 54(4), 621-639.

Huang, Z. -F., Shen, Y., Luo, H. -J., Liu, J. -N. & Liu, J. (2018). Enhancement of extracellular lipid production by oleaginous yeast through preculture and sequencing batch culture strategy with acetic acid. Bioresource Technology, 247, 395-401.

Kalscheuer, R., Torsten Stolting, T. & Steinbuchel, A. (2006). Microdiesel: Escherichia coli engineered for fuel production. Microbiology, 152, 2529-2536.

Kumar, S., Gupta, N. & Pakshirajan, K. (2015). Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application. Journal of Environmental Chemical Engineering, 3, 1630-1636.

Liang, M. -H. & Jiang, J. -G. (2013). Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in Lipid Research, 52(4), 395-408.

Limtong, S. (2549). Yeast: Khuamlaklailehtechnologychiwaphab. Bangkok: Kasetsart University.

Louhasakul, Y. (2012). Cultivation of oleaginous yeasts in industrial wastes for oil production and its application for biodiesel production. Master's thesis of Science in Biotechnology. Prince of Songkla University.

Louhasakul, Y. & Cheirsilp, B. (2013). Industrial Waste Utilization for Low-Cost Production of Raw Material Oil Through Microbial Fermentation. Applied Biochemistry and Biotechnology, 169(1), 110–122.

Louhasakul, Y., Cheirsilp, B. & Prasertsan, P. (2016). Valorization of Palm oil mill effluent into lipid and cell-bound lipase by marine yeast Yarrowia lipolytica and their application in biodiesel production. Waste and Biomass Valorization, 7(3), 417–426.

Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., Xian, M., (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy, 34, 1-5.

Mühlroth, A., Li, K., RØkke, G., Winge, P., Olsen, Y., Hohmann-Marriott, M. F., et al. (2013). Pathway of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate gene for enhanced production of EPA and DHA in species of Chromista. Mar Drugs, 11(11), 4662-4697.

Papanikolaou, S. & Aggelis, G. (2011). Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 113, 1031–1051.

Papanikolaou, S. Chevalot, I., Galiotou–Panayotou, M. and Komaitis, M. 2007. Industrial derivative of tallow: A promising renewable substrate for microbial lipid, single–cell protein and lipase production by Yarrowia lipolytica. Electronic Journal of Biotechnology, 10, 425–435.

Papanikolaou, S., Chevalot, I., Komaitis, M., Aggelis, G. and Marc. I. (2001). Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie Van Leeuwenhoek, 80, 215-224.

Rasheva, T., Kujumdzieva, A. & Hallet, J. N. (1997). Lipid production by Monascus purpureus albino strain. Journal of Biotechnology, 56, 217–224.

Ratledge, C. and Wynn, J. P. 2002. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in applied microbiology, 51, 1–51.

Ryckebosch, E., Bermúdez, S. P. C., Termote-Verhalle, R., Bruneel, C., Muylaert, K., Parra-Saldiver, R., et al. (2013). Influence of extraction solvent system on the extractability of lipid components from the biomass of Nannochloropsis gaditana. Journal of Applied Phycology, 26, 1501-1510.

Shields-Menard, S. A. Amirsadeghi, M., French, W. T. & Boopathy, R. (2018). A review on microbial lipids as a potential biofuel. Bioresource Technology, 259, 451-460.

Srinuanpan, S., Cheirsilp, B., Prasertsan, P., Kato, Y. & Asano, Y. (2018). Strategies to increase the potential use of oleaginous microalgae as biodiesel feedstocks: Nutrient starvations and cost-effective harvesting process. Renewable Energy, 122, 507-516.

Subhash, G. V. & Mohan, S. V. (2015). Sustainable biodiesel production through bioconversion of lignocellulosic wastewater by oleaginous fungi. Biomass Conversion and Biorefinery, 2, 215-226.

Subramaniam, R., Dufreche, S., Zappi, M. & Bajpai, R. (2010). Microbial lipids from renewable resource: production and characterization. Journal of Industrial Microbiology and Biotechnology, 37, 1271-1287.

Szczęsna-Antczak, M., Struszczyk-Świta, K., Rzyska, M., Szeląg, J., Stańczyk Ł. & Antczak, T. (2018). Oil accumulation and in situ trans/esterification by lipolytic fungal biomass. Bioresource Technology, 265, 110-118.

Tai, M. & Stephanopoulos, G. (2013). Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Engineering, 15. 1-9.

Thawechai, T., Cheirsilp, B., Louhasakul, Y., Boonsawang, P. & Prasertsan, P. (2016). Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: Effect of light illumination and carbon dioxide feeding strategies. Bioresource Technology, 219, 139-149.

Uprety, B. K., Dalli, S. S. & Rakshit, S. K. (2017). Bioconversion of crude glycerol to microbial lipid using a robust oleaginous yeast Rhodosporidium toruloides ATCC 10788 capable of growing in the presence of impurities. Energy Conversion and Management, 135, 117-128.

Wynn, J. & Ratledge, C. (2005). Oil from microorganism: Bailey’s Industrial Oil and Fat Product. (6th ed), 6, 121-153.

Yao, Q., Chen, H., Wang, S., Tang, X., Gu, Z., Zhang, H., Chen, W. & Chen, Y. Q. (2019). An efficient strategy for screening polyunsaturated fatty acid-producing oleaginous filamentous fungi from soil. Journal of Microbiological Methods, 158, 80-85.

Zhang, Q., Li, Y. & Xia, L. (2014). An oleaginous endophyte Bacillus subtilis HB1310 isolated from thin-shelled walnut and its utilization of cotton stalk hydrolysate for lipid production. Biotechnology for Biofuels, 7, 152.

Zhou, W., Wang, H., Chen, L., Cheng, W. & Liu, T. (2017). Heterotrophy of filamentous oleaginous microalgae Tribonema minus for potential production of lipid and palmitoleic acid. Bioresource Technology, 239, 250-257.

Zhu, L. Y. Zong, M. H. & Wu, H. (2008). Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresource Technology, 99, 7881–7885.