Study of Suitable Conditions of Sweet Corn Pulp Syrup Production
Main Article Content
Abstract
Sweet corn pulp, a byproduct of corn milk production, is often disposed of at low prices, resulting in economic inefficiency. This study aimed to explore the potential for value addition through syrup production from sweet corn pulp. The research investigated syrup production conditions using alpha-amylase at concentrations of 0.05%, 0.10%, 0.15%, and 0.20%, with reaction times of 30 and 60 minutes. Results indicated that increasing alpha-amylase concentration and reaction time enhanced the total color change (DE), density, and total soluble solids of the syrup. Conversely, moisture content and water activity decreased, while pH remained statistically unchanged. Syrup produced using 0.20% alpha-amylase for 60 minutes exhibited significantly higher total color change values, total soluble solids, and density compared to syrups produced with lower alpha-amylase concentrations (p≤0.05). Notably, reaction times did not significantly affect transmittance values and syrup density at the same alpha-amylase concentration (p>0.05). The application of 0.05-0.15% alpha-amylase for syrup production yielded approximately 33.75±1.75% to 35.33±0.58% (p>0.05). Syrup produced with 0.10% alpha-amylase demonstrated the highest reducing sugar content of 82.38±2.9 g/L (p≤0.05). Therefore, the optimal conditions for sweet corn pulp syrup production were determined to be 0.10 alpha-amylase concentration with a 30-minute reaction time, resulting in the highest yield and reducing sugar content (p≤0.05).
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการเผยแพร่ในวารสารวิทยาศาสตร์และเทคโนโลยี มรย. นี้ ถือเป็นลิขสิทธิ์ของวารสารวิทยาศาสตร์และเทคโนโลยี มรย. หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากวารสารวิทยาศาสตร์และเทคโนโลยี มรย. ก่อนเท่านั้น
References
Acosta-Pavas, J. C., Alzate-Blandon, L. & Ruiz-Colorado, A. A. (2020). Enzymatic hydrolysis of wheat starch for glucose syrup production. DYNA, 87(214), 173-182.
Aït-Aissa, A., Gerliani, N., Orlova, T., Sadeghi-Tabatabai, B. & Aïder, M. (2020). Development of a process for color improvement of low-grade dark maple syrup by adsorption on activated carbon. ACS Omega, 5(33), 21084–21093.
Alatyrev, S. S., Alatyrev, A. S., Zaitsev, P. V., Bulatov, S. Y., Nechaev, V. N., Sizova, Y. V. & Moiseev, A. I. (2020). Results of comparative studies of grain syrup quality. IOP Conf. Series: Earth and Environmental Science, 433, 012031
AOAC. (2016). Official methods of analysis of AOAC international (20th ed.). MD: AOAC International.
Benhura, C., Kugara, J., Muchuweti, M., Nyagura, S. F., Gombiro, P. E. & Dotito, P. (2016). Effect of drying temperature on the content of reducing sugars in syrups of Parinari curatellifolia Planch. Ex Benth. Fruit and cereal based products, zvambwa. Indian Journal of Traditional Knowledge, 15(3), 494-499.
Berski, W. & Ziobro, R. (2017). Pasting and gel characteristics of normal and waxy maize starch in glucose syrup solutions. Journal of Cereal Science, 79, 253-258.
Cabral, M. M. S., de Almeida, Y. M. B., Andrade, S. A. C., Caldas, C. S., de Freitas, J. D., Costa, C. C. B. & Soletti, J. I. (2022). Influence of phenolic compounds on color formation at different stages of the VHP sugar manufacturing process. Scientific Reports, 12, 19922.
Department of Agriculture. (2019). Hybrid sweet corn seed (pilot) loss adjustment standards handbook [Online]. Retrieved February 21, 2024, from: https://www.rma.usda.gov/sites/default/files/handbooks/2019-Hybrid-Sweet-Corn-Seed-Pilot-Loss-Adjustment.pdf
Echemi. (2022). All about glucose syrup [Online]. Retrieved February 21, 2024, from: https://www.echemi.com/cms/757841.html
Fatourehchi, F., Farrokhi, F., Eyvazzadeh, O., Bahadori, A. & Yaghoubi, A. A. S. (2022). Production of glucose syrup through enzymatic hydrolysis of flint and floury corn flour mixtures and evaluating its properties as cost -effective syrup. Journal of Food Science and Technology (Iran), 129(19), 23-38.
Food Intelligence Centre. (2019). Situation of the processed sweet corn product industry in Thailand [Online]. Retrieved February 21, 2024, from: https://fic.nfi.or.th/sector-monitor-detail.php?cat=15&type=&smid=2130#. (in Thai)
Head, J., Kinyunjui, J., Talbott, M. & Clifford, R. (2015). Maple syrup color analysis using US/VIS spectrophotometry [Online]. Retrieved March 9, 2024, from: https://www.americanlaboratory.com/914-Application-Notes/180188-Maple-Syrup-Color-Analysis-Using-UV-VIS-Spectrophotometry/
Hu, Q. & Liu, J. (2021). Production of α-amylase by Bacillus subtilis QM3 and its enzymatic properties. Open Access Library Journal, 8, e7291.
Jung, Y., Lee, B. & Yoo, S. (2017). Physical structure and absorption properties of tailor-made porous starch granules produced by selected amylolytic enzymes. PLoS ONE, 12(7), e0181372.
Marwati, T., Cahyaningrum, N., Widodo, S., Astiati, U. T., Budiyanto, A., Wahyudiono, Arif, A. B. & Richana, N. (2018). The effect of alpha amylase enzyme on quality of sweet sorghum juice for crystal sugar. IOP Conf. Series: Earth and Environmental Science, 102, 012090.
Mohammed, O. E. F., Mustafa, A. M. I., Mohamed, B. E. & Ahmed, I. A. M. (2021). Enzymatic production of glucose syrup from Sudanese sorghum and millet. National Journal of Multidisciplinary Research and Development, 6(3), 14-18.
N’Guyen, G. Q., Martin, N., Jain, M., Lagace, L., Landry, C. R. & Filteau, M. (2018). A systems biology approach to explore the impact of maple tree dormancy release on sap variation and maple syrup quality. Scientific Reports, 8(1), 14658.
Nkhata, S. G. (2020). Total color change (E*) is a poor estimator of total carotenoids lost during post-harvest storage of biofortified maize grains. Heliyon, 6, e05173.
Nyarko, C., Mills, J. A., Afortude, J. K., Kizzie, N., Agbale, C. M. & Nyarko, S. B. (2019). Effect of pH stability of alpha amylase extracted from Aspergillus niger on starch from local rice in Ghana. Asian Journal of Microbiology and Biotechnology, 4(1), 24-34.
Ofoedu, C. E., Osuji, C. M. & Ojukwu, M. (2019). Sugar profile of syrups from malted and unmalted rice of different varieties. Journal of Food Research, 8(1), 52-59.
Osuji, C. M., Ofoedu, C. E., Omeire, G. C. & Ojukwu, M. (2020). Colour analysis of syrup from malted and unmalted rice of different varieties. Croatian Journal of Food Science and Technology, 12(1), 130–138.
Panyasak, A. & Tumwasorn, S. (2015). Effect of moisture content and storage time on sweet corn waste silage quality. Walailak Journal of Science and Technology, 12(3), 237-243.
Permanasari, A. R., Yulistiani, F., Purnama, R. W., Widjaja, T. & Gunawan, S. (2018). The effect of substrate and enzyme concentration on the glucose syrup production from red sorghum starch by enzymatic hydrolysis. IOP Conf. Series: Earth and Environmental Science, 160, 012002.
Rosida, D. F., Djajati, S. & Susanti, F. S. (2019). Production of maltodextrin from Cocoyams (Xanthosoma Sagittifolium) starch using A-amylase enzyme. Journal of Physics: Conference Series, 1569, 042052.
Rezvanian, K., Jafarinejad, S. & Bovell-Benjamin, A. C. (2023). A review on sweet potato syrup production process: effective parameters and syrup properties. Processes, 11, 3280.
Sharma, J. K., Sihmar, M., Santal, A. R., Prager, L., Carbonero, F. & Singh, N. P. (2021). Barley melanoidins: key dietary compounds with potential health benefits. Frontiers in Nutrition, 8, 708194.
Scanlon, M. G., Henrich, A. W. & Whitaker, J. R. (2018). Factors affecting enzyme activity in food processing In Yada, R. Y. (Ed.), Proteins in Food Processing (pp. 337–365). Cambridge: Woodhead Publishing.
Thai Trade Centre New York. (2023). US corn market trends [Online]. Retrieved February 21, 2024, from: https://www.ditp.go.th/post/140972. (in Thai)
Trisnaputri, A. C., Usman, N. R., Mustawa, M. A. & Jaya, A. M. (2018). Production banana glucose syrup with the -amylase supplementation. International Journal of Applied Biology, 2(1), 61-65.
Vanier, N. L., Halal, S. L. M. E., Dias, A. R. G. & Zavareze, E. R. (2017). Molecular structure, functionality and applications of oxidized starches: A review. Food Chemistry, 221, 1546-1559.
Vitz, E., Moore, J. W., Shorb, J., Prat-Resina, X., Wendorff, T. & Hahn, A. (2023). Sugar soluble density [Online]. Retrieved February 29, 2024, from: https://chem.libretexts.org/Ancillary_Materials/Exemplars_and_Case_Studies/Exemplars/Foods/Sugar_Solution_Density.
United States Department of Agriculture. (2016). United states standards for grades of maple syrup [Online]. Retrieved March 9, 2024, from: https://www.ams.usda.gov/sites/default/files/media/MapleSyrupStandards.pdf
United States Department of Agriculture. (2017). Commercial item description syrup (not including maple syrup) [Online]. Retrieved March 9, 2024, from: https://www.ams.usda.gov/sites/default/files/media/CID%20Syrup.pdf
Wang, M., Jin, Z., Liu, L., Wang, Z., Li, F., Sun, W., et al. (2018). Inhibition of cyclodextrins on the activity of α-amylase. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 90(3-4), 351–356.
Yandri, Witazora, Y., Suhartati, T. & Hadi, H. S. S. (2020). Production, purification, and characterization of the α-amylase from local bacteria isolate Bacillus subtilis ITBCCB148. Journal of Physics: Conference Series, 1751, 012096.
Zhang, W., Zhu, B., Childs, H., Whent, M., Yu, L., Pehrsson, P. R., et al. (2022). Effects of boiling and steaming on the carbohydrates of sweet corn. ACS Food Science & Technology, 2, 951−960.