Influence of Osmotic Solution and Vacuum Condition on the Quality of Iron-Supplemented Asian Seabass (Lates calcarifer) Fillet by Osmosis
Main Article Content
Abstract
The objective of this research was to optimize the suitable osmotic solution and condition for the iron-supplemented barramundi fillet production by osmosis. Ferrous sulfate was applied as an iron supplement at the concentration about 0.2, 0.4, 0.6, 0.8 and 1% in the osmotic solution. The result found that barramundi fillet after osmosis from the use of 10% sodium chloride and 40% glucose as the osmotic solution in vacuum soaking was the highest values of water loss (8.82 ± 0.15%) and solid gain (6.84 ± 0.16%) at 240 min. The iron content of barramundi fillet (control) indicated about 0.37 mg/ 100 g samples. The increasing of ferrous sulphate concentration in osmotic solution affected a greater iron content of samples in the range of 12.4 – 62.0 mg/100 g sample. The iron supplantation of barramundi fillet altered the color value as the decreasing of L* a* and b* values. However, the sensory evaluation result of iron-supplemented barramundi fillet which osmosis in 1% ferrous sulfate was as like moderately in overall attribute.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการเผยแพร่ในวารสารวิทยาศาสตร์และเทคโนโลยี มรย. นี้ ถือเป็นลิขสิทธิ์ของวารสารวิทยาศาสตร์และเทคโนโลยี มรย. หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากวารสารวิทยาศาสตร์และเทคโนโลยี มรย. ก่อนเท่านั้น
References
Alonso, V., Muela, E., Tenas, J., Calanche, J. B., Roncales, P. & Beltran, J. A. (2016). Changes in physicochemical properties and fatty acid composition of pork following long term frozen storage. Eur Food Res Technol, 242, 2119–2127.
Bryszewska, M. A. (2019). Comparison Study of Iron Bioaccessibility from Dietary Supplements and Microencapsulated Preparations. Nutrients, 11, 273.
Bureau of Nutrition Department of Health Ministry of Public Health. (2020). Dietary Reference Intake Tables for Thais 2020 (1st ed.). Bangkok: A.V. Progressive Ltd., Part. (in Thai)
Department of Trade Negotiations. (2020). Fresh, Chilled and Frozen Asian seabass [Online]. Retrieved March 3, 2021, from https://api.dtn.go.th/files/v3/5f4f3ebfef414020773e4b32/download
Dimakopoulou-Papazoglou, D. & Katsanidis, E. (2020). Osmotic Processing of Meat: Mathematical Modeling and Quality Parameters. Food Eng Rev, 12, 32–47.
Giannakourou, M. C., Tsironi, T., Thanou, I., Tsagri, A. M., Katsavou, E., Lougovois, V., Kyrana, V., Kasapidis, G. & Sinanoglou, V. J. (2019). Shelf Life Extension and Improvement of the Nutritional Value of Fish Fillets through Osmotic Treatment Based on the Sustainable Use of Rosa damascena Distillation By-Products [Online]. Foods, 8, 421, 1-15. Retrieved January 29, 2021, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770147/
Giannakourou, M. C., Stavropoulou, N., Tsironi, T., Lougovois, V., Kyrana, V., Konteles, S. J. & Sinanoglou, V. J. (2020). Application of hurdle technology for the shelf life extension of European eel (Anguilla anguilla) fillets [Online]. Aquaculture and Fisheries. Retrieved January 29, 2021, from https://doi.org/10.1016/j.aaf.2020.10.003
Harrington, M., Hotz, C., Zeder, C., Polvo, G.O., Villalpando, S., Zimmermann, M.B., Walczyk, T., Rivera, J.A. & Hurrell, R.F. (2011). A comparison of the bioavailability of ferrous fumarate and ferrous sulfate in non-anemic Mexican women and children consuming a sweetened maize and milk drink. Eur J Clin Nutr, 65, 20–25.
Kamruzzaman, S., Hossain, M. D., Jewel, M. A. S., Khanom, D. A., Mustary, S. & Khatun, M. M. (2015). Proximate composition and nutritional value of different life stages of Lates calcarifer (Bloch, 1790). Univ j zool Rajshahi Univ, 34, 21-24.
Maqsood, S. & Benjakul, S. 2011. Effect of bleeding on lipid oxidation and quality changes of Asian seabass (Lates calcarifer) muscle during iced storage. Food Chem, 124, 459–467.
Mobarra, N., Shanaki, M., Ehteram, H., Nasiri, H., Sahmani, M., Saeidi, M., Goudarzi, M., Pourkarim, H. & Azad, M. (2016). A Review on Iron Chelators in Treatment of Iron Overload Syndromes. Int J Hematol Oncol Stem Cell Res, 10(4), 239-247.
Pechsiri, J., Panritdam, T., Chainapon, T. & Yooyen, T. (2020). Fillet Quality of Asian Seabass Lates calcarifer (Bloch, 1790) Grown in Monoculture and Coculture Systems in Freshwater Earthen-ponds. Asian Fish Sci, 33, 23–30.
Pervin, T., Yeasmin, S., Islam, R., Kamruzzaman, Rahman, A. & Sattar, A. (2012). Studies on nutritional composition and characterization of lipids of Lates calcarifer (Bhetki). Bangladesh J Sci Ind Res, 47(4), 393-400.
Rodriguez-Ramiro, I., Brearley, C.A., Bruggraber, S.F.A., Perfecto, A., Shewry, P., Fairweather-Tait, S. (2017). Assessment of iron bioavailability from different bread making processes using an in vitro intestinal cell model I. Food Chem, 228, 91-98.
Secci, G. & Parisi, G. (2016). From farm to fork: lipid oxidation in fish products. A review, Ital J Anim Sci, 15(1), 124-136.
Siddique, A. & Park, Y. W. (2019). Effect of iron fortification on microstructural, textural, and sensory characteristics of caprine milk Cheddar cheeses under different storage treatments. J Dairy Sci, 102, 2890–2902.
Shapawi, R. & Zamry, A.A. (2016) Response of Asian seabass, Lates calcarifer juvenile fed with different seaweed-based diets, J Appl Anim Res, 44(1), 121-125.
Tortoe, C. (2010). A review of osmodehydration for food industry. Afr J Food Sc, 4(6), 303-324.
Triwaree, C. (2019). Iron deficiency anemia. Journal of Hematology and Transfusion Medicine, 29(1), 5-7, 2019. (in Thai)
Yuenyongputtakal, W., Thimthong, D., Bangsri, W. & Worasingh, S. (2013). Effect of Pre-treatment Method and Iron Content Enrichment on Sea Lettuce (Ulva rigida) in Osmosis Process. TU journal, 21(5), 461-473. (in Thai)