The role of wood-based biochar on growth, yield, and cadmium uptake in rice (Oryza sativa L.) grown under cadmium stress

Main Article Content

M.A. Sobahan
N. Akter
Md. F. Hossain

Abstract

Background and Objective: Rice (Oryza sativa L.) is prone to absorb cadmium (Cd), which is a vital environmental pollutant and a harmful threat to food security and human health. In general, the application of biochar mitigates the detrimental effect of Cd stress on the growth, yield and quality of plants. To address this effect a pot experiment was conducted to investigate the effect of wood-based biochar on plant growth, yield, and physiological status in rice plants under Cd stress.
Methodology: The experiment was sequenced according to a completely randomized design with 3 replicates. Four different treatments namely control (0% biochar and no Cd stress), 25 ppm Cd stress, 2.5% wood-based biochar, and 25 ppm Cd stress + 2.5% wood-based biochar were used in the experiment. Data on plant height, tiller number, leaf area, and SPAD value were recorded 30 days after planting and analyzed statistically.
Main Results: Cadmium had a negative impact on the growth and yield of rice. The results exhibited that under Cd stress plant height (79.9 ± 2.00 cm), leaf area (47.09 ± 5.11 cm2), SPAD value (36.08 ± 0.37), grains per panicle (136 ± 9) and grain yield (51.37 ± 8.09 g hill-1) of rice significantly (P < 0.05) decreased. Cd-stressed plants significantly (P < 0.05) increased sterility percentage (35.55 ± 2.15) and grains Cd concentration (1.56 ± 0.065 mg kg-1). In addition, soil pH was significantly (P < 0.05) increased (8.93 ± 0.24) in Cd-treated soil. The application of biochar in Cd-stressed plants significantly (P < 0.05) increased soil pH (9.15 ± 0.29), leaf area (54.83 ± 1.33 cm2), SPAD value (39.06 ± 1.50), grains per panicle (136 ± 9) and grain yield (70.78 ± 1.50 g hill-1), whereas Cd concentration significantly (P < 0.05) decreased (1.26 ± 0.14 mg kg-1).
Conclusions: These results suggest that mitigation of Cd toxicity by wood-based biochar results from a decrease in the uptake of Cd, indicating the role of wood-based biochar in enhancing plant growth and yield as well as reducing the potential risks to humans.

Article Details

Section
Research Article

References

Abit, S.M., C.H. Bolster, P. Cai and S.L. Walker. 2012. Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil. Environ. Sci. Technol. 46(15): 8097–8105. https://doi.org/10.1021/es300797z.

Ahmad, J.U. and M.A. Goni. 2010. Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environ. Monit. Assess. 166: 347–357. https://doi.org/10.1007/s10661-009-1006-6.

Ali, H., E. Khan and M.A. Sajad. 2013. Phytoremediation of heavy metals – concepts and applications. Chemosphere. 91(7): 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075.

BARI (Bangladesh Agricultural Research Institute). 2016. BARI Booklet. Bangladesh Agricultural Research Institute, Bangladesh.

Bashir, H., M.I. Qureshi, M.M. Ibrahim and M. Iqbal. 2015. Chloroplast and photosystems: impact of cadmium and iron deficiency. Photosynthetica. 53: 321–335. https://doi.org/10.1007/s11099-015-0152-z.

Bashir, S., M. Rehman, M. Yousaf, A. Salam, A.B. Gulshan, J. Iqbal, I. Aziz, M. Azeem, S. Rukh and R.M.A. Asghar. 2019. Comparative efficiency of wheat straw and sugarcane bagasse biochar reduces the cadmium bioavailability to spinach and enhances the microbial activity in contaminated soil. Int. J. Phytoremediation. 21(11): 1098–1103. https://doi.org/10.1080/15226514.2019.1606781.

Bhuyan, M.H.M.B., K. Parvin, S.M. Mohsin, J.A. Mahmud, M. Hasanuzzaman and M. Fujita. 2020. Modulation of cadmium tolerance in rice: insight into vanillic acid-induced upregulation of antioxidant defense and glyoxalase systems. Plants (Basel). 9(2): 188. https://doi.org/10.3390/plants9020188.

Boraah, N., S. Chakma and P. Kaushal. 2022. Attributes of wood biochar as an efficient adsorbent for remediating heavy metals and emerging contaminants from water: a critical review and bibliometric analysis. J. Environ. Chem. Eng. 10(3): 107825. https://doi.org/10.1016/j.jece.2022.107825.

BRRI (Bangladesh Rice Research Institute). 2021. Plant Physiology Division. Bangladesh Rice Research Institute, Bangladesh.

CAC (Codex Alimentarius Commission). 2005. Joint FAO/WHO Food Standards Programme Codex Alimentarius Commission. Report of the Twenty-eighth Session. ALINORM 05/28/12. FAO, Rome, Italy.

Campbell, C.R. and C.O. Plank. 1992. Sample preparation, pp. 1–12. In: C.O. Plank, (Ed.), Plant Analysis Reference Procedures for the Southern Region of the United States. Southern Cooperative Series Bulletin 368. Georgia Agricultural Experiment Station, University of Georgia, Georgia, USA.

Case, S.D.C., N.P. McNamara, D.S. Reay, A.W. Stott, H.K. Grant and J. Whitaker. 2015. Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol. Biochem. 81: 178–185. https://doi.org/10.1016/j.soilbio.2014.11.012.

Chen, P., H.Y. Wang, R.L. Zheng, B. Zhang and G.X. Sun. 2018. Long-term effects of biochar on rice production and stabilisation of cadmium and arsenic levels in contaminated paddy soils. Earth Environ. Sci. Trans. R. Soc. Edinb. 109(3–4): 415–420. https://doi.org/10.1017/S175569101800049X.

Drake, J.A., T.R. Cavagnaro, S.C. Cunningham, W.R. Jackson and A.F. Patti. 2016. Does biochar improve establishment of tree seedlings in saline sodic soils?. Land Degrad. Dev. 27(1): 52–59. https://doi.org/10.1002/ldr.2374.

Eid, E.M., A.F. El-Bebany, M.A. Taher, S.A. Alrumman, T.M. Galal, K.H. Shaltout, N.A. Sewelam and M.T. Ahmed. 2020. Heavy metal bioaccumulation, growth characteristics, and yield of Pisum sativum L. grown in agricultural soil-sewage sludge mixtures. Plants. 9(10): 1300. https://doi.org/10.3390/plants9101300.

Gabhane, J.W., V.P. Bhange, P.D. Patil, S.T. Bankar and S. Kumar. 2020. Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Appl. Sci. 2: 1307. https://doi.org/10.1007/s42452-020-3121-5.

Gallego, S.M., L.B. Pena, R.A. Barcia, C.E. Azpilicueta, M.F. Iannone, E.P. Rosales, M.S. Zawoznik, M.D. Groppa and M.P. Benavides. 2012. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ. Exp. Bot. 83: 33–46. https://doi.org/10.1016/j.envexpbot.2012.04.006.

Haque, M.M., M.M. Rahman, M.M. Morshed, M.S. Islam and M.S.I. Afrad. 2019. Biochar on soil fertility and crop productivity. The Agriculturists. 17: 76–88.

He, T., J. Meng, W. Chen, Z. Liu, T. Cao, X. Cheng, Y. Huang and X. Yang. 2017. Effects of biochar on cadmium accumulation in rice and cadmium fractions of soil: a three-year pot experiment. BioResources. 12(1): 622–642.

Herath, H.M.D.A.K., D.C. Bandara, P.A. Weerasinghe, M.C.M. Iqbal and H.C.D. Wijayawardhana. 2014. Effect of cadmium on growth parameters and plant accumulation in different rice (Oryza sativa L.) varieties in Sri Lanka. Trop. Agric. Res. 25(4): 532–542. https://doi.org/10.4038/tar.v25i4.8059.

Hou, W., J. Shen, W. Xu, M.R. Khan, Y. Wang, X. Zhou, Q. Gao, B. Murtaza and Z. Zhang. 2021. Recommended nitrogen rates and the verification of effects based on leaf SPAD readings of rice. Peer J. 9: e12107. https://doi.org/10.7717/peerj.12107.

Hussain, S., M. Irfan, A. Sattar, S. Hussain, S. Ullah, T. Abbas, H. Ur-Rehman, F. Nawaz, A. Al-Hashimi, M.S. Elshikh, M. Cheema and J. Yang. 2022. Alleviation of cadmium stress in wheat through the combined application of boron and biochar via regulating morpho-physiological and antioxidant defense mechanisms. Agronomy. 12(2): 434. https://doi.org/10.3390/agronomy12020434.

Ijaz, M., M.S. Rizwan, M. Sarfraz, S. Ul-Allah, A. Sher, A. Sattar, L. Ali, A. Ditta and B. Yousaf. 2020. Biochar reduced cadmium uptake and enhanced wheat productivity in alkaline contaminated soil. Int. J. Agric. Biol. 24(6): 1633–1640. https://doi.org/10.17957/ijab/15.1605.

Junior, A. and M. Guo. 2023. Efficacy of sewage sludge derived biochar on enhancing soil health and crop productivity in strongly acidic soil. Front. Soil Sci. 3: 1066547. https://doi.org/10.3389/fsoil.2023.1066547.

Kanu, A.S., U. Ashraf, Z. Mo, I. Fuseini, L.R. Mansaray, M. Duan, S. Pan and X. Tang. 2017. Cadmium uptake and distribution in fragrant rice genotypes and related consequences on yield and grain quality traits. J. Chem. 2017: 1405878. https://doi.org/10.1155/2017/1405878.

Ke, S., X.Y. Cheng, N. Zhang, H.G. Hu, Q. Yan, L.L. Hou, X. Sun and Z.N. Chen. 2015. Cadmium contamination of rice from various polluted areas of China and its potential risks to human health. Environ. Monit. Assess. 187: 408. https://doi.org/10.1007/s10661-015-4638-8.

Khare, P. and D.K. Goyal. 2013. Effect of high and low rank char on soil quality and carbon sequestration. Ecol. Eng. 52: 161–166. https://doi.org/10.1016/j.ecoleng.2012.12.101.

Kim, H.S., K.R. Kim, J.R. Yang, Y.S. Ok, G. Owens, T. Nehls, G. Wessolek and K.H. Kim. 2016. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere. 142: 153–159. https://doi.org/10.1016/j.chemosphere.2015.06.041.

Kim, K., M.M. Melough, T.M. Vance, H. Noh, S.I. Koo and O.K. Chun. 2018. Dietary cadmium intake and sources in the US. Nutrients. 11(1): 2. https://doi.org/10.3390/nu11010002.

Lahori, A.H., Z. Guo, Z. Zhang, R. Li, A. Mahar, M.K. Awasthi, F. Shen, T.A. Sial, F. Kumbhar, P. Wang and S. Jiang. 2017. Use of biochar as an amendment for remediation of heavy metal-contaminated soils: prospects and challenges. Pedosphere. 27(6): 991–1014. https://doi.org/10.1016/S1002-0160(17)60490-9.

Lehmann, J. and S. Joseph. 2015. Biochar for Environmental Management: Science, Technology and Implementation. Routledge, London, UK.

Leibold, M.A. and M.A. McPeek. 2006. Coexistence of the niche and neutral perspectives in community ecology. Ecology. 87(6): 1399–1410. https://doi.org/10.1890/0012-9658(2006)87[1399:cotnan]2.0.co;2.

Lux, A., M. Martinka, M. Vaculík and P.J. White. 2011. Root responses to cadmium in the rhizosphere: a review. J. Exp. Bot. 62(1): 21–37. https://doi.org/10.1093/jxb/erq281.

Majidi, A.H. 2022. Effect of different biochar concentration on the growth of three agricultural plants in Afghanistan. Journal of Wastes and Biomass Management. 4(1): 01–07. http://doi.org/10.26480/jwbm.01.2022.01.07.

Mao, J.D., R.L. Johnson, J. Lehmann, D.C. Olk, E.G. Neves, M.L. Thompson and K. Schmidt-Rohr. 2012. Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Environ. Sci. Technol. 46(17): 9571–9576. https://doi.org/10.1021/es301107c.

Mostofa, M.G., A. Rahman, M.M.U. Ansary, A. Watanabe, M. Fujita and L.S.P. Tran. 2015. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Sci. Rep. 5: 14078. https://doi.org/10.1038/srep14078.

Mylavarapu, R., V. Nair and K. Morgan. 2013. An introduction to biochars and their uses in agriculture. Publication No. SL383. IFAS Extension, University of Florida, Florida, USA.

Nguyen, T.N.D., K.T. Vu, T.H.N. Nguyen, T.P. Nguyen, N.K. Pham, T.G. Nguyen, M.S. Rumanzi and L.V. Nguyen. 2023. Effects of biochar and rice straw application on rice (Oryza sativa L.) growth, yield, and cadmium accumulation in contaminated soil. Vegetos. https://doi.org/10.1007/s42535-023-00604-6.

Ok, Y.S., A.R.A. Usman, S.S. Lee, S.A.M. Abd El-Azeem, B. Choi, Y. Hashimoto and J.E. Yang. 2011. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere. 85(4): 677‒682. https://doi.org/10.1016/j.chemosphere.2011.06.073.

Onwuka, M.I. and B.C. Nwangwu. 2016. Roles of biochar produced from animal and plant wastes on okra (Abelmoschus esculenta) growth in Umudike area of Abia State, Nigeria. J. Agric. Sustain. 9(2): 158–174.

Parmar, A., P.K. Nema and T. Agarwal. 2014. Biochar production from agro-food industry residues: a sustainable approach for soil and environmental management. Curr. Sci. 107(10): 1673–1682.

Parvizi, Y., A. Ronaghi, M. Maftoun and N.A. Karimian. 2004. Growth, nutrient status, and chlorophyll meter readings in wheat as affected by nitrogen and manganese. Commun. Soil Sci. Plant Anal. 35: 1387–1399. https://doi.org/10.1081/CSS-120037553.

Proshad, R., T. Kormoker, M.S. Islam and K. Chandra. 2020. Potential health risk of heavy metals via consumption of rice and vegetables grown in the industrial areas of Bangladesh. Hum. Ecol. Risk Assess. 26(4): 921–943. https://doi.org/10.1080/10807039.2018.1546114.

Qiu, Z., J. Tang, J. Chen and Q. Zhang. 2020. Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar’s recalcitrance. Environ. Pollut. 256: 113436. https://doi.org/10.1016/j.envpol.2019.113436.

Rai, P.K., S.S. Lee, M. Zhang, Y.F. Tsang and K.H. Kim. 2019. Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ. Int. 125: 365–385. https://doi.org/10.1016/j.envint.2019.01.067.

Ramesh, K., B. Chandrasekaran, T.N. Balasubramanian, U. Bangarusamy, R. Sivasamy and N. Sankaran. 2002. Chlorophyll dynamics in rice (Oryza sativa) before and after flowering based on SPAD (chlorophyll) meter monitoring and its relation with grain yield. J. Agron. Crop Sci. 188(2): 102–105. https://doi.org/10.1046/j.1439-037X.2002.00532.x.

Rizwan, M., S. Ali, M. Adrees, H. Rizvi, M. Zia-ur-Rehman, F. Hannan, M.F. Qayyum, F. Hafeez and Y.S. Ok. 2016. Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ. Sci. Pollut. Res. 23: 17859–17879. https://doi.org/10.1007/s11356-016-6436-4.

Rizwan, M., S. Ali, M. Adrees, M. Ibrahim, D.C.W. Tsang, M. Zia-ur-Rehman, Z.A. Zahir, J. Rinklebe, F.M.G. Tack and Y.S. Ok. 2017. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere. 182: 90–105. https://doi.org/10.1016/j.chemosphere.2017.05.013.

Rizwan, M., S. Ali, T. Abbas, M.Z. ur Rehman and M.I. Al-Wabel. 2018. Residual impact of biochar on cadmium uptake by rice (Oryza sativa L.) grown in Cd-contaminated soil. Arab. J. Geosci.11: 630. https://doi.org/10.1007/s12517-018-3974-8.

Spokas, K.A., J.M. Novak, C.E. Stewart, K.B. Cantrell, M. Uchimiya, M.G. DuSaire and K.S. Ro. 2011. Qualitative analysis of volatile organic compounds on biochar. Chemosphere. 85(5): 869–882. https://doi.org/10.1016/j.chemosphere.2011.06.108.

Whitman, T.L. and C.J. Lehmann. 2011. Systematic under- and overestimation of GHG reductions in renewable biomass systems. Climate Change. 104: 415–422. https://doi.org/10.1007/s10584-010-9984-5.

Williams, P.N., M. Lei, G. Sun, Q. Huang, Y. Lu, C. Deacon, A.A. Meharg and Y.G. Zhu. 2009. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ. Sci. Technol. 43(3): 637–642. https://doi.org/10.1021/es802412r.

Yousaf, B., G. Liu, R. Wang, M. Zia-ur-Rehman, M.S. Rizwa, M. Imtiaz, G. Murtaza and A. Shakoor. 2016. Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of Cd in the soil-plant system. Environ. Earth Sci. 75: 374. https://doi.org/10.1007/s12665-016-5285-2.

Zhuang, P., B. Zou, N.Y. Li and Z.A. Li. 2009. Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health. Environ. Geochem. Health. 31(6): 707–715. https://doi.org/10.1007/s10653-009-9248-3.