Growth performance and physiological response of rabbit bucks to oral administration of white radish juice in a hot humid environment

Main Article Content

B.C. Majekodunmi
E.O. Adekunle
M.O. Logunleko
O.F. Akinjute
A.A. Adeyemo
J.I. Akinwande
M.O. Abioja
J.O. Daramola

Abstract

Background and Objectives: White radish root is rich in phytochemicals with high antioxidant properties, which are needed for the amelioration of heat stress in tropical rabbit production. This study investigated the effect of oral administration of white radish root juice (WRRJ) on growth performance, physiological response, and blood profile of rabbit bucks in a hot humid environment.
Methodology: Eighteen rabbit bucks were randomly allotted into 3 treatments of 6 bucks per treatment: 0 mL of WRRJ (control), 5 mL of WRRJ, and 10 mL of WRRJ, in an 8-week experiment. Data were collected on feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR). Rectal temperature (RT), respiratory rate (RR), heart rate (HR), and ear temperature (ET) were measured using standard procedures. Blood samples were collected for hematology and selected serum biochemical analysis.
Main Results: The FI, BWG, and FCR were similar (P > 0.05) among the treatments. Range of values obtained for RT (38.3 ± 0.30 to 39.6 ± 0.21 °C), RR (171.5 ± 5.83 to 236.0 ± 2.39 breaths/min), HR (149.0 ± 3.84 to 176.0 ± 7.48 beats/min) and ET (35.5 ± 0.76 to 37.9 ± 0.86 °C) were statistically (P > 0.05) similar among the treatments. However, in the 7th week of the experiment, RT of bucks given 10 mL WRRJ (39.6 ± 0.21 °C) was higher (P < 0.05) than RT of bucks on 5 mL WRRJ (38.5 ± 0.36 °C). No significant (P > 0.05) variation was observed in the hematological parameters and serum biochemical indices among the treatments except in the total protein of rabbits on 10 mL WRRJ (5.3 ± 0.25 g/dL), which differ significantly (P < 0.05) from 7.0 ± 0.24 g/dL (5 mL WRRJ) but similar to 6.5 ± 0.07 g/dL (control) at the onset of the experiment. The heterophil lymphocyte ratio of 0.48 ± 0.03, 0.43 ± 0.05, and 0.36 ± 0.05 were observed for the control, 5, and 10 mL WRRJ treatments, respectively at the 8th week of the experiment.
Conclusion: Administration of WRRJ at 5 and 10 mL twice weekly offered no significant antioxidant effect on the growth performance, physiological response, and blood profile of rabbit bucks.

Article Details

Section
Research Articles

References

Abedo, A.A., F.A.F. Ali, H.A.A. Omer and S.A.M. Ibrahim. 2012. Response of growing rabbits to diets containing different levels of protein and radish (Raphanus sativus L) seeds. J. Agric. Sci. 4(3): 281–289. https://doi.org/10.5539/jas.v4n3p281.

Adriaan Bouwknecht, J., B. Olivier and R.E. Paylor. 2007. The stress-induced hyperthermia paradigm as a physiological animal model for anxiety: a review of pharmacological and genetic studies in the mouse. Neurosci. Biobehav. Rev. 31(1): 41–59. https://doi.org/10.1016/j.neubiorev.2006.02.002.

Anwar, O., M. Iqbal, A.M. Khan, S. Tariq and A. Ambreen. 2020. Effect of Raphanus sativus (Radish) leaf extract and high doses of atorvastatin on body weight, liver weight and liver/body weight ratio. APMC. 14(4): 313–317. https://doi.org/10.29054/apmc/2020.721.

Atasever, A., D. Yaman Gram, G. Ekebas, N. Ertas Onmaz, M. Senturk, M. Eren and L. Ekici. 2020. Effect of fermented red radish (Raphanus sativus L) in carbon tetrachloride-induced liver injury in rats. Thai J. Vet. Med. 50(3): 405–416.

Beevi, S.S., L.N. Mangamoori and B.B. Gowda. 2012. Polyphenolics profile and antioxidant properties of Raphanus sativus L. Nat. Prod. Res. 26(6): 557–563. https://doi.org/10.1080/14786419.2010.521884.

Chaturvedi, P. 2008. Inhibitory response of Raphanus sativus on lipid peroxidation in albino rats. Evid. Based Complement. Alternat. Med. 5(1): 55–59. https://doi.org/10.1093/ecam/nel077.

Dehghani, F., M. Azizi and M.R. Panjehshahin. 2011. The effects of aqueous extract of Raphanus sativus on blood glucose, triglyceride and cholesterol in diabetic rats. IJPT. 10(2): 66–70.

El Sabry, M.I., M.M. Zaki, F.A. Elgohary and M.M. Helal. 2021. Sustainable rabbit production under the global warming conditions in Southern Mediterranean region. World Vet. J. 11(4): 543–548. https://doi.org/10.54203/scil.2021.wvj69.

El-Tohamy, M.M., W.S. El-Nattat and R.I. El-Kady. 2010. The beneficial effects of Nigella sativa, Raphanus sativus and Eruca sativa seeds cakes to improve male rabbit fertility immunity and production. J. Am. Sci. 6(10): 1247–1255.

Esaki, H. and H. Onozaki. 1982. Antimicrobial action of pungent principles in radish root. Nihon Eiyo Shokuryo Gakkai Shi. 35(3): 207–211. https://doi.org/10.4327/jsnfs1949.35.207.

Feldman, B.F., J.G. Zinkl and N.C. Jain. 2000. Schalm’s Veterinary Haematology. 5th Edition. Lippincott Williams & Wilkins, Philadelphia, USA.

Ghayur, M.N. and A.H. Gilani. 2006. Radish seed extract mediates its cardiovascular inhibitory effects via muscarinic receptor activation. Fundam. Clin. Pharmacol. 20(1): 57–63. https://doi.org/10.1111/j.1472-8206.2005.00382.x.

Ghozy, S.F.A.E. and R.I. Tag Al Deen. 2019. Effect of fresh red radish roots juice on some biomarker for hypertrophy of adipose tissue in obese rats. Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. 54(2): 1–20. https://doi.org/10.21608/bnni.2020.108366.

Goyeneche, R., S. Roura, A. Ponce, A. Vega-Galvez, I. Quispe-Fuentes, E. Uribe and K.D. Scala. 2015. Chemical characterization and antioxidant capacity of red radish (Raphanus sativus L.) leaves and roots. J. Funct. Foods. 16: 256–264. https://doi.org/10.1016/j.jff.2015.04.049.

Hashem, F.A. and M.M. Saleh. 1999. Antimicrobial components of some cruciferae plants (Diplotaxis harra Forsk. and Erucaria microcarpa Boiss.). Phytother. Res. 13(4): 329–332. https://doi.org/10.1002/(sici)1099-1573(199906)13:4%3C329::aid-ptr458%3E3.0.co;2-u.

Hashimoto, T., Y. Ueda, N. Oi, H. Sakakibara, C. Piao, H. Ashida, M. Goto and K. Kanazawa. 2006. Effects of combined administration of quercetin, rutin and extract of white radish sprout rich in kaemferol glycosides on the metabolism in rats. Biosci. Biotechnol. Biochem. 70: 279–281. https://doi.org/10.1271/bbb.70.279.

Hecht, S.S., P.M. Kenney, M. Wang, N. Trushin and P. Upadhyaya. 2000. Effects of phenethyl isothiocyanate and benzyl isothiocyanate, individually and in combination, on lung tumorigenesis induced in A/J mice by benzo[a]pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Lett. 150(1): 49–56. https://doi.org/10.1016/s0304-3835(99)00373-0.

Iyeghe-Erakpotobor, G.T., O.M. Akinsola, T.T. Samuel and P.F. Pewar, 2013. Growth and physiological responses of rabbit hyla stock in a sub-humid tropical environment. J. Anim. Prod. Res. 25: 25–36.

Jain, N.C. 1986. Schalm’s Veterinary haematology. 4th Edition. Lea & Febiger, Philadelphia, USA.

Jenkins, J.R. 2008. Rabbit diagnostic testing. J. Exot. Pet. Med. 17(1): 4–15. https://doi.org/10.1053/j.jepm.2007.12.003.

Jimoh, O.A., E.S. Ayedun, W.A. Oyelade, O.D. Oloruntola, O.T. Daramola, S.O. Ayodele and I.S. Omoniyi. 2018. Protective effect of soursop (Annona muricata linn.) juice on oxidative stress in heat stressed rabbits. J. Anim. Sci. Technol. 60: 28. https://doi.org/10.1186/s40781-018-0186-4.

Kapoor, L.D. 1990. Handbook of Ayurvedic Medicinal Plants. CRC Press, Boca Raton, Florida, USA.

Katsuzaki, H., Y. Miyahara, M. Ota, K. Imai and T. Komiya. 2004. Chemistry and antioxidative activity of hot water extract of Japanese radish (daikon). Biofactors. 21: 211–214. https://doi.org/10.1002/biof.552210142.

Lugasi, A., A. Blázovics, K. Hagymási, I. Kocsis and A. Kéry. 2005. Antioxidant effect of squeezed juice from black radish (Raphanus sativus L. var niger) in alimentary hyperlipidaemia in rats. Phytother. Res. 19(7): 587–591. https://doi.org/10.1002/ptr.1655.

Maertens, L. and T. Gidenne. 2016. Feed efficiency in rabbit production: nutritional, technico-economical and environmental aspects, pp. 131–151. In: Proceeding of the 11th World Rabbit Congress. June 15–18, 2016. Quingdao, China.

Magied, M.M., A.M. Alian, L.A. Fattah, M. Haerrdy and M.T. Hussein. 2016. The protective effect of white and red radish as hypoglycemic and hypocholesterolemic agents. IOSR J. Pharm. Biol. Sci. 11(3): 51–61. https://doi.org/10.9790/3008-1103035161.

Manivannan, A., J.H. Kim, D.S. Kim, E.S. Lee and H.E. Lee. 2019. Deciphering the nutraceutical potential of Raphanus sativus—a comprehensive overview. Nutrients. 11(2): 402. https://doi.org/10.3390%2Fnu11020402.

Marai, I.F., M.S. Ayytat and U.M. Abd el-Monem. 2001. Growth performance and reproductive trans at first parity of New Zealand White female rabbits as affected by heat stress and its alleviation under Egyptian conditions. Trop. Anim. Health Prod. 33(6): 451–462. https://doi.org/10.1023/a:1012772311177.

Marai, I.F.M. and A.A. Habeeb. 1994. Thermoregulation in rabbits. Options Mediterraneennes. 8: 33–41.

Marai, I.F.M., A.A.M. Habeeb and A.E. Gad. 2002. Rabbits’ productive, reproductive and physiological performance traits as affected by heat stress: a review. Livest. Prod. Sci. 78(2): 71–90. https://doi.org/10.1016/S0301-6226(02)00091-X.

Marai, I.F.M., A.A.M. Habeeb and A.E. Gad. 2008. Performance of New Zealand White and Californian male weaned rabbits in the subtropical environment of Egypt. Anim. Sci. J. 79(4): 472–480. https://doi.org/10.1111/j.1740-0929.2008.00552.x.

Medirabbit. 2011. Complete blood count and biochemical reference values in rabbits. Available Source: www.medirabbit.com. July 3, 2023.

Mohammed, N.H.SH., A.I. Abelgasim and A.H. Mohammed. 2008. Protective effect of Raphanus sativus against carbon tetrachloride induced hepatotoxicity in Wistar albino rats. J. Pharmacol. Toxicol. 3(4): 272–278. https://doi.org/10.3923/jpt.2008.272.278.

Moram, G.S.E., T. El-sayed Kholief and A.T.F. Ahmed. 2015. Antioxidant effect of radish (Raphanus sativus L.) and leek (Allium porrum L.) juices against hepatotoxicity and nephrotoxicity induced by dimethoate in male albino mice. World J. Pharm. Res. 4(12): 215–246.

Okab, A.B., S.G. El-Banna and A.A. Koriem. 2008. Influence of environmental temperatures on some physiological and biochemical parameters of male New-Zealand rabbit males. Slovak J. Anim. Sci. 41(1): 12–19.

Oladimeji, A.M., T.G. Johnson, K. Metwally, M. Farghly and K.M. Mahrose. 2022. Environmental heat stress in rabbits: implications and ameliorations. Int. J. Biometeorol. 66: 1–11. https://doi.org/10.1007/s00484-021-02191-0.

Robertshaw, D. 2004. Temperature regulation and thermal environment, pp. 962–974. In: H.H. Dukes and W.O. Reece, (Eds), Dukes’ Physiology of Domestic Animals. 12th Edition. Cornell University Press, New York, USA.

Salah-Abbès, J.B., S. Abbès, Z. Haous and R. Oueslati. 2009. Raphanus sativus extract prevents and ameliorates zearalenone-induced peroxidative hepatic damage in Balb/c mice. J. Pharm. Pharmacol. 61(11): 1545–1554. https://doi.org/10.1211/jpp.61.11.0015.

Salah-Abbès, J.B., S. Abbès, Z. Ouanes, Z. Houas, M.A. Abdel-Wahhab, H. Bacha and R. Oueslati. 2008. Tunisian radish extract (Raphanus sativus) enhances the antioxidant status and protects against oxidative stress induced by zearalenone in Balb/c mice. J. Appl. Toxicol. 28(1): 6–14. https://doi.org/10.1002/jat.1240.

SAS. 1999. SAS/STAT User’s Guide. Version 8 for Windows. SAS Institute Inc., Cary, North Carolina, USA.

Serra, M., M.G. Pisu, I. Floris, S. Floris, E. Cannas, A. Mossa, G. Trapani, A. Latrofa, R.H. Purdy and G. Biggio. 2004. Social isolation increases the response of peripheral benzodiazepine receptors in the rat. Neurochem. Int. 45(1): 141–148. https://doi.org/10.1016/j.neuint.2003.11.013.

Shah, M., G. Shahu, A.K. Tamrakar, S. Malshetthy, S. Janadri and S. Swamy. 2014. Cardiotoxic activity of leaves extract of Raphanus sativus Linn. in adult male albino rats. Int. J. Pharm. Phytopharmacol. Res. 4(1): 66–69.

Shebl, H.M., M.A. Ayoub, W.H. Kishik, H.A. Khalil and R.M. Khalifa. 2008. Effect of thermal stresses on the physiological and productive performance of pregnant doe rabbits. Agric. Res. J. 8(1): 15–24.

Sipos, P., K. Hagymási, A. Lugasi, E. Fehér and A. Blázovics. 2002. Effects of black radish root (Raphanus sativus L. var niger) on the colon mucosa in rats fed a fat rich diet. Phytother. Res. 16(7): 677–679. https://doi.org/10.1002/ptr.950.

Taniguchi, H., R. Muroi, K. Kobayashi-Hattori, Y. Uda, Y. Oishi and T. Takita. 2007. Differing effects of water-soluble and fat-soluble extracts from Japanese radish (Raphanus sativus) sprouts on carbohydrate and lipid metabolism in normal and streptozotocin-induced diabetic rats. J. Nutr. Sci. Vitaminol. (Tokyo). 53(3): 261–266. https://doi.org/10.3177/jnsv.53.261.

Wang, L., K. Burhenne, B.K. Kristensen and S.K. Rasmussen. 2004. Purification and cloning of a Chinese red radish peroxidase that metabolise pelargonidin and forms a gene family in Brassicaceae. Gene. 343(2): 323–335. https://doi.org/10.1016/j.gene.2004.09.018.

Wang, L.S., X.D. Sun, Y. Cao, L. Wang, F.J. Li and Y.F. Wang. 2010. Antioxidant and pro-oxidant properties of acylated pelargonidin derivatives extracted from red radish (Raphanus sativus var. niger, Brassicaceae). Food Chem. Toxicol. 48(10): 2712–2718. https://doi.org/10.1016/j.fct.2010.06.045.

Willmer, P., G. Stone and J. Johnston. 2000. Environmental Physiology of Animals. 1st Edition. Blackwell Scientific Publications, Oxford, UK.

Yagci, A., B. Zik, C. Uguz and K. Altunbas. 2006. Histology and morphometry of White New Zealand rabbit skin. Indian Vet. J. 83(8): 876–880.

Younus, I. and A. Siddiq. 2022. Raphanus sativus L. Var. caudatus as an analgesic and antipyretic agent in animal models. Pakistan J. Zool. 54(4): 1643–1648.