Relative growth, blood profiles, antioxidant status and electrolyte balance of broilers fed high monosodium glutamate supplemented with ginger (Zingiber officinale) meal

Main Article Content

O.J. Olarotimi
F.A. Gbore
O.A. Adu
O.A. Jimoh
O.S. Abe
M.T. Ayankoso
C.O. Adeniran

Abstract

Background and Objectives: The potential of monosodium glutamate (MSG) in enhancing feed palatability has been studied. However, it may cause growth and physiological imbalances in animals. In contrast, herbal additives, like ginger rhizome meal (GRM), rich in bioactive compounds, act as antioxidants to mitigate nutritional-induced oxidative stress. This study aims to investigate the ameliorative effects of GRM on broilers fed diets with high MSG inclusion on growth, blood profile, serum antioxidant status, and electrolyte balance.
Methodology: Three hundred sixty (360) day-old chicks were equally divided into 4 groups: A (Basal diet), B (Basal + 1.25 g MSG/kg diet), C (Diet B + 1.25 g GRM/kg diet), and D (Diet B + 2.50 g GRM/kg diet), with 6 replications containing 15 birds each (90 birds/diet). Experimental diets and water were provided ad libitum for 6 weeks. Data were analyzed using one-way analysis of variance (ANOVA).
Main Results: Average weekly weight gain (g/bird/week) significantly increased (P < 0.05) in diets B (272.71 ± 1.75), C (295.31 ± 2.33), and D (311.10 ± 4.67) compared to the control (244.27 ± 0.96). Diet B showed a higher mortality rate (18.89 ± 2.22%) than diets A (11.56 ± 0.73%), C (7.67 ± 0.00%), and D (5.00 ± 0.96%). Hematological and serum biochemical indices were adversely affected by diet B (P < 0.05). Serum antioxidative enzymes decreased (P < 0.05) in diet B, while serum potassium and sodium were unaffected (P > 0.05). Serum chloride concentration increased significantly (P < 0.05) in diet B.
Conclusions: The inclusion of MSG at 1.25 g/kg with 1.25 to 2.50 g GRM/kg diet enhanced the growth rate without compromising the health status of the birds.

Article Details

Section
Research Articles

References

Abdulsalam, H., S. Adamu, S.J. Sambo, J.J. Gadzama, M.A. Chiroma, J.T. Adeke, J.A. Atata and D.L. Mohzo. 2017. Haematological response of adult male Wistar rats experimentally exposed to oral monosodium glutamate. J. Vet. Appl. Sci. 7(2): 29–34.

Adebayo, F.B., O.A. Adu, C.A. Chineke, O.D. Oloruntola, O.S. Omoleye, S.A. Adeyeye and S.O. Ayodele. 2020. The performance and heamatological indices of broiler chickens fed chromium picolinate and vitamin C supplemented diets. Asian J. Res. Anim. Vet. Sci. 6(4): 54–61.

Adu, O.A., O.J. Olarotimi and S.O. Olayode. 2018. Effects of dietary copper sources on haematological, serum biochemical and hormonal profiles of laying hens. Arch. Zootec. 67(257): 109–117.

Agu, E.C., N.J. Okeudo, N.O. Aladi and V.M.O. Okoro. 2017. Effect of dietary inclusion of ginger meal (Zingiber officinale Roscoe) on performance, serum cholesterol profile and carcass quality of broilers. Nig. J. Anim. Prod. 44(1): 254–266.

Al-Khalaifah, H., A. Al-Nasser, T. Al-Surrayai, H. Sultan, D. Al-Attal, R. Al-Kandari, H. Al-Saleem, A. Al-Holi and F. Dashti. 2022. Effect of ginger powder on production performance, antioxidant status, hematological parameters, digestibility, and plasma cholesterol content in broiler chickens. Animals (Basel). 12(7): 901. https://doi.org/10.3390/ani12070901.

Aniagu, S.O., F.C. Nwinyi, D.D. Akumka, G.A. Ajoku, S. Dzarma, K.S. Izebe, M. Ditse, P.E.C. Nwaneri, C. Wambebe and K. Gamaniel. 2004. Toxicity studies in rats fed nature cure bitters. Afr. J. Biotechnol. 4(1): 72–78.

Ashaolu, J.O., V.O. Ukwenya, A.B. Okonoboh, O.K. Ghazal and A.A.G. Jimoh. 2011. Effect of monosodium glutamate on hematological parameters in Wistar rats. Int. J. Med. Med. Sci. 3(6): 219–222. https://doi.org/10.5897/IJMMS.9000080.

Cannan, R.K. 1958. Clinical Practical Chemistry. Vol. I. 5th Edition. CBS Publisher and Distributor, New Delhi, India.

Diniz, Y.S., A.A.H. Fernandes, K.E. Campos, F. Mani, B.O. Ribas and E.L.B. Novelli. 2004. Toxicity of hypercaloric diet and monosodium glutamate: oxidative stress and metabolic shifting in hepatic tissue. Food Chem. Toxicol. 42(2): 313–319. https://doi.org/10.1016/j.fct.2003.09.006.

El Malik, A. and M.K. Sabahelkhier. 2019. Changes in lipid profile and heart tissues of Wistar rats induces by using monosodium glutamate as food additive. Int. J. Biochem. Physiol. 4(1): 000147. https://doi.org/10.23880/ijbp-16000147.

El-Ezaby, M.M., N.A.H. Abd-El Hamide, M.A.E. Abd El-Maksoud, E.M. Shaheen and M.M.R. Embashi. 2018. Effect of some food additives on lipid profile, kidney function and liver function of adult male albino rats. J. Bas. & Environ. Sci. 5: 52–59.

Eweka, A. and F. Om’Iniabohs. 2006. Histological studies of the effects of monosodium glutamate on the cerebellum of adult Wistar rats. Internet J. Neurol. 8(2): 1–5.

Gbore, F.A., O.R. Olumomi, I.M. Aworetan and R.A.O. Gabriel-Ajobiewe. 2016. Oral administration of monosodium glutamate alters growth and blood parameters in female rabbits. Eur. J. Biol. Res. 6(3): 218–225. https://doi.org/10.5281/zenodo.150297.

Ghadhban, R.F. 2017. Effects of monosodium glutamate on some hematological parameters in adult rats. Indian J. Appl. Res. 7(2): 689–690.

Gounden, V., H. Bhatt and I. Jialal. 2021. Renal function tests. StatPearls [Internet]. Available Source: https://www.ncbi.nlm.nih.gov/books/NBK507821/. March 25, 2023.

Hall, J.E. 2016. Guyton and Hall Textbook of Medical Physiology. 13th Edition. Elsevier, Philadelphia, USA.

Hewitt, R.J.E. and R.J. van Barneveld. 2012. Supplementation of lactating sow diets with glutamine to improve milk yield and growth of piglets. Report Prepared for the Co-operative Research Centre for an Internationally Competitive Pork Industry, Commercial in Confidence.

Hussein, U.K., N.E.Y. Hassan, M.E.A. Elhalwagy, A.R. Zaki, H.O. Abubakr, K.C. Nagulapalli Venkata, K.Y. Jang and A. Bishayee. 2017. Ginger and propolis exert neuroprotective effects against monosodium glutamate-induced neurotoxicity in rats. Molecules. 22(11): 1928. https://doi.org/10.3390/molecules22111928.

Ibrahim, O.M.S., N.N. Abdulhamza and H.K. Abbass. 2012. Some hematological and histological impact of sub-acute exposure to mono sodium glutamate in mice. Iraqi J. Vet. Med. 36(0E): 127–131.

Khadiga, A.A. Ati, S. Mohammed, A.M. Saad and H.E. Mohamed. 2009. Response of broiler chicks to dietary monosodium glutamate. Pakistan Vet. J. 29(4): 165–168.

Khalil, R.M. and N.F. Khedr. 2016. Curcumin protects against monosodium glutamate neurotoxicity and decreasing NMDA2B and mGluR5 expression in rat hippocampus. Neurosignals. 24(1): 81–87. https://doi.org/10.1159/000442614.

Kim, W.R., S.L. Flamm, A.M. Di Bisceglie and H.C. Bodenheimer. 2008. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology. 47(4): 1363–1370. https://doi.org/10.1002/hep.22109.

Kondoh, T. and K. Toril. 2008. MSG intake suppresses weight gain, fat deposition, and plasma leptin in male Sprague-Dawley rats. Physiol. Behav. 95(1–2): 135–144. https://doi.org/10.1016/j.physbeh.2008.05.010.

Lindemann, B., Y. Ogiwara and Y. Ninomiya. 2002. The discovery of unami. Chem. Senses. 27(9): 843–844. https://doi.org/10.1093/chemse/27.9.843.

Mohamed, A.B., M.A.M. Al-Rubaee and A.Q. Jalil. 2012. Effect of ginger (Zingiber officinale) on performance and blood serum parameters of broiler. Int. J. Poul. Sci. 11(2): 143–146. https://doi.org/10.3923/ijps.2012.143.146.

Moreki, J.C. and K. Gabanakgosi. 2014. Potential use of Moringa oleifera in poultry diets. Glob. J. Anim. Sci. Res. 2(2): 109–115.

Oladipo, I.C., E.A. Adebayo and O.M. Kuye. 2015. Effects of monosodium glutamate on ovaries of female Aprague-Dawley rats. Int. J. Curr. Microbiol. Appl. Sci. 4(5): 737–745.

Olarotimi, O.J. 2020. Serum electrolyte balance and antioxidant status of broiler chickens fed diets containing varied levels of monosodium glutamate (MSG). Bull. Natl. Res. Cent. 44: 103. https://doi.org/10.1186/s42269-020-00360-6.

Olarotimi, O.J. 2021. Quality parameters, lipids and antioxidant profiles of eggs from hens fed diets with varied inclusions of monosodium glutamate. J. Poult. Res. 18(1): 5–12. https://doi.org/10.34233/jpr.813355.

Olarotimi, O.J. and O.A. Adu. 2020. Semen characteristics, gonadal and extragonadal sperm reserves in cocks fed diets containing different inclusion levels of monosodium glutamate. Slovak J. Anim. Sci. 53(1): 1–11.

Olarotimi, O.J., O.T. Ewegbemi, D. Olorunfemi, O.A. Adu and F.A. Gbore. 2021. Blood and reproductive indices of rabbit does gavaged different levels of monosodium glutamate. Ann. Anim. Bio. Res. 1(1): 17–24.

Olateju, I.S., O.J. Olarotimi, O.A. Adu and F.A. Gbore. 2019. Effects of dietary monosodium glutamate on the acetylcholinesterase, specific acetylcholinesterase, and total protein concentrations in the brain regions of domestic fowl (Gallus domesticus) layers. Nigerian J. Anim. Sci. 21(3): 89–94.

Oleforuh-Okoleh, V.U., G.C. Chukwu and A.I. Adeolu. 2014. Effect of ground ginger and garlic on the growth performance, carcass quality and economics of production of broiler chickens. G.J.B.B. 3(3): 225–229.

Ozkur, M., N. Benlier, I. Takan, C. Vasileiou, A.G. Georgakilas, A. Pavlopoulou, Z. Cetin and E.I. Saygili. 2022. Ginger for healthy aging: a systematic review on current evidence of its antioxidant, antiinflammatory, and anticancer properties. Oxid. Med. Cell. Longev. 2022: 4748447. https://doi.org/10.1155/2022/4748447.

Rahmani, A.H., F.M. Al Shabrmi and S.M. Aly. 2014. Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities. Int. J. Physiol. Pathophysiol. Pharmacol. 6(2): 125–136.

SAS. 2008. SAS/STAT User’s Guide. Version 9.2 for Windows. SAS Institute Inc., Cary, North Carolina, USA.

Shah, M., N. Chand, R.U. Khan, M. Saeed, M. Ragni, S. Tarricone, V. Laudadio, C. Losacco and V. Tufarelli. 2022. Mitigating heat stress in broiler chickens using dietary onion (Allium cepa) and ginger (Zingiber officinale) supplementation. S. Afr. J. Anim. Sci. 52(6): 811–818. http://doi.org/10.4314/sajas.v52i6.07.

Sharma, A. 2015. Monosodium glutamate-induced oxidative kidney damage and possible mechanisms: a mini-review. J. Biomed. Sci. 22(1): 93. https://doi.org/10.1186/s12929-015-0192-5.

Tazawa, H., S.J. Andrewartha and W.W. Burggren. 2011. Development of hematological respiratory variables in late chicken embryos: the relative importance of incubation time and embryo mass. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 159(3): 225–233. https://doi.org/10.1016/j.cbpa.2011.02.024.

Weiss, D. and H. Tvedten. 2004. The complete blood count and bone marrow examination: general comments and selected techniques, pp.14–37. In: M.D. Willard and H. Tvedten, (Eds), Small Animal Clinical Diagnosis by Laboratory Methods. 4th Edition. W.B. Saunders, Missouri, USA.