Effects of tobacco (Nicotiana tabacum) applied with gibberellic acid (GA3) in response to different durations of drought and flooding
Main Article Content
Abstract
Background and Objective: Tobacco (Nicotiana tabacum) is a major industrial crop used in cigars and cigarettes. Drought and flooding can significantly impact its growth. Gibberellic acid (GA3) explored its potential to enhance the resilience. Therefore, this study investigates the effects of GA3 on tobacco growth under varying drought and flooding conditions.
Methodology: The study utilized 6 × 2 factorials in a randomized complete block design (RCBD) with three replications. Factor A included stress duration treatments: control (Con), drought for three days (D), prolonged drought for five days (PD), flood for three days (F), prolonged flood for five days (PF), flood followed by prolonged drought (F + PD), and prolonged flood followed by prolonged drought (PF + PD). Factor B involved gibberellic acid 3 (GA3) application, with B1 representing GA3 application (WG) and B2 without GA3 (WOG). Data was analyzed with two-way ANOVA. Treatment means differences assessed via Tukey’s HSD test.
Main Results: Gibberellic acid 3 (WG) significantly influenced (P < 0.05) plant height (PH), number of leaves (NL), leaf length (LL), root length (RL), and biomass yield (BY), averaging 35.71 ± 2.34 cm, 5.00 ± 0.53, 31.14 ± 1.87 cm, 25.14 ± 1.42 cm, and 195.43 ± 7.65 g, respectively. Con + WG notably had significantly higher PH (63.00 ± 3.12 cm), NL (7.00 ± 0.53), LL (50.00 ± 2.34 cm), RL (36 ± 1.87 cm), and BY (255.65 ± 9.72 g). Different durations of drought and flooding stress conditions high significantly impaired tobacco growth, resulting in decreased PH from 60.00 ± 17.07 to 17.50 ± 7.79 cm and LL from 43.00 ± 8.60 to 17.50 ± 0.71 cm.
Conclusions: GA3 application enhances tobacco growth, boosting plant height, leaf count, length, and biomass yield, counteracting water stress’s adverse effects. Water stress diminishes tobacco metrics like plant height, leaf area, and fresh weight.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abd El-Samad, H.M. 2013. The physiological response of wheat plants to exogenous application of gibberellic acid (GA3) or indole-3-acetic acid (IAA) with endogenous ethylene under salt stress conditions. Int. J. Plant Physiol. Biochem. 5(4): 58–64. https://doi.org/10.5897/IJPPB12.016.
Akhtar, I. and N. Nazir. 2013. Effect of waterlogging and drought stress in plants. Intl. J. Water Resources & Environ. Sci. 2(2): 34–40. https://doi.org/10.5829/idosi.ijwres.2013.2.2.11125.
Ali, J., I. Jan, H. Ullah, S. Fahad, S. Saud, M. Adnan, B. Ali, K. Liu, M.T. Harrison, S. Hassan, S. Kumar, M.A. Khan, M. Kamran, M.S. Alwahibi and M.S. Elshikh. 2023. Biochemical response of okra (Abelmoschus esculentus L.) to selenium (Se) under drought stress. Sustainability 15(7): 5694. https://doi.org/10.3390/su15075694.
Biglouei, M.H., M.H. Assimi and A. Akbarzadeh. 2010. Effect of water stress at different growth stages on quantity and quality traits of Virginia (flue-cured) tobacco type. Plant Soil Environ. 56(2): 67–75.
Farnia, A. and M.M. Omidi. 2015. Effect of nano-zinc chelate and nano-biofertilizer on yield and yield components of maize (Zea mays L.), under water stress condition. Indian J. Nat. Sci. 5(29): 4614–4624.
Farooq, M., A. Wahid, N. Kobayashi, D. Fujita and S.M.A. Basra. 2009. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 29: 185–212. https://doi.org/10.1051/agro:2008021.
Jiang, W., H. Zhou, H. Bi, M. Fromm, B. Yang and D.P. Weeks. 2013. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41(20): e188. https://doi.org/10.1093/nar/gkt780.
Li, J., W. Sima, B. Ouyang, T. Wang, K. Ziaf, Z. Luo, L. Liu, H. Li, M. Chen, Y. Huang, Y. Feng, Y. Hao and Z. Ye. 2012. Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. J. Exp. Bot. 63(18): 6407–6420. https://doi.org/10.1093/jxb/ers295.
Li, L., J. Zhao, Y. Zhao, X. Lu, Z. Zhou, C. Zhao and G. Xu. 2016. Comprehensive investigation of tobacco leaves during natural early senescence via multi-platform metabolomics analyses. Sci. Rep. 6: 37976. https://doi.org/10.1038/srep37976.
Mafakheri, A., A. Siosemardeh, B. Bahramnejad, P.C. Struik and Y. Sohrabi. 2011. Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three chickpea (Cicer arietinum) cultivars. Aust. J. Crop Sci. 5(10): 1255–1260.
Mangani, R., E.H. Tesfamariam, G. Bellocchi and A. Hassen. 2018. Growth, development, leaf gaseous exchange, and grain yield response of maize cultivars to drought and flooding stress. Sustainability 10(10): 3492. https://doi.org/10.3390/su10103492.
Miceli, A., A. Moncada, L. Sabatino and F. Vetrano. 2019. Effect of gibberellic acid on growth, yield, and quality of leaf lettuce and rocket grown in a floating system. Agronomy 9(7): 382. https://doi.org/10.3390/agronomy9070382.
Morales-Payan, J.P. 2000. 300 Effects of plant growth regulators on eggplant (Solanum melongena L.) yield. HortScience 35(3): 443C–443. https://doi.org/10.21273/HORTSCI.35.3.443C.
Peng, T., X. Zhu, N. Duan and J.H. Liu. 2014. PtrBAM1, a β‐amylase‐coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels. Plant Cell Environ. 37(12): 2754–2767. https://doi.org/10.1111/pce.12384.
PSA (Philippine Statistics Authority). 2023. Major Non-Food and Industrial Crops Quarterly Bulletin. Quezon City, Philippines.
Shah, S.H., S. Islam, F. Mohammad and M.H. Siddiqui. 2023. Gibberellic acid: A versatile regulator of plant growth, development and stress responses. J. Plant Growth Regul. 42(12): 7352–7373. https://doi.org/10.1007/s00344-023-11035-7.
Shi, Y., T.N. Weingarten, C.B. Mantilla, W.M. Hooten and D.O. Warner. 2010. Smoking and pain: Pathophysiology and clinical implications. Anesthesiology 113(4): 977–992. https://doi.org/10.1097/ALN.0b013e3181ebdaf9.
Shomeili, M., M. Nabipour, M. Meskarbashee and H.R. Memari. 2011. Effects of gibberellic acid on sugarcane plants exposed to salinity under a hydroponic system. Afr. J. Plant Sci. 5(10): 609–616.
Striker, G.G. 2012. Flooding stress on plants: Anatomical, morphological and physiological responses, pp. 3–28. In: J. Mworia, (Ed.), Botany. InTech.
Tardieu, F. 2012. Any trait or trait-related allele can confer drought tolerance: Just design the right drought scenario. J. Exp. Bot. 63(1): 25–31. https://doi.org/10.1093/jxb/err269.
Vanaja, M., M. Maheswari, P. Sathish, P. Vagheera, N.J. Lakshmi, G.V. Kumar, S.K. Yadav, A. Razzaq, J. Singh and B. Sarkar. 2015. Genotypic variability in physiological, biomass and yield response to drought stress in pigeonpea. Physiol. Mol. Biol. Plants. 21(4): 541–549. https://doi.org/10.1007%2Fs12298-015-0324-0.
Wu, J., J. Wang, W. Hui, F. Zhao, P. Wang, C. Su and W. Gong. 2022. Physiology of plant responses to water stress and related genes: A review. Forests 13(2): 324. https://doi.org/10.3390/f13020324.
Xu, J., M. Cai, J. Li, B. Chen, Z. Chen, W. Jia and Z. Xu. 2022. Physiological, biochemical and metabolomic mechanisms of mitigation of drought stress-induced tobacco growth inhibition by spermidine. Ind. Crops Prod. 181: 114844. https://doi.org/10.1016/j.indcrop.2022.114844.
Yang, J.J., D. Yu, W. Wen, X.O. Shu, E. Saito, S. Rahman, P.C. Gupta, J. He, S. Tsugane, Y.B. Xiang, Y.T. Gao, W.P. Koh, A. Tamakoshi, F. Irie, A. Sadakane, I. Tsuji, S. Kanemura, K. Matsuo, C. Nagata, C.J. Chen, J.M. Yuan, M.H. Shin, S.K. Park, W.H. Pan, Y.L. Qiao, M.S. Pednekar, D. Gu, N. Sawada, H.L. Li, J. Gao, H. Cai, E. Grant, Y. Tomata, Y. Sugawara, H. Ito, K. Wada, C.Y. Shen, R. Wang, Y.O. Ahn, S.L. You, K.Y. Yoo, H. Ashan, K.S. Chia, P. Boffetta, M. Inoue, D. Kang, J.D. Potter and W. Zheng. 2019. Tobacco smoking and mortality in Asia: A pooled metaanalysis. JAMA Netw. Open. 2(3): e191474. https://doi.org/10.1001/jamanetworkopen.2019.1474.
Zhang, H., M. Pala, T. Oweis and H. Harris. 2000. Water use and water-use efficiency of chickpea and lentil in a Mediterranean environment. Aust. J. Agric. Res. 51(2): 295–304. https://doi.org/10.1071/AR99059.