Comparative growth and development of zigzag ladybird beetle (Cheilomenes sexmaculata) fed with black bean aphids (Aphis fabae) and green peach aphids (Myzus persicae)
Main Article Content
Abstract
Background and Objective: Cheilomenes sexmaculata, a biological control predator found in the Philippines, is not fully adopted to naturally control various aphid species in most cultivated crops. For rearing purposes, it is important to identify its preferred natural diet to have a basis for successful mass rearing and augmentation. Thus, a study was conducted on C. sexmaculata to assess its growth and development when fed with different aphid species.
Methodology: Under laboratory conditions, the study was arranged in a completely randomized experimental design. Myzus persicae and Aphis fabae were the treatments of the study and supplied every morning at rates of 10, 20, 30, and 40 individuals for the 1st, 2nd, 3rd, and 4th larval instar of C. sexmaculata, respectively. Each treatment was replicated 30 times. All data were statistically analyzed through a two-sample t-test at P < 0.05.
Main Results: The results showed a significant difference in the aphids consumed at the 4th larval instar, with a mean of 39.24 ± 0.22 fed with M. persicae and 36.00 ± 0.75 with A. fabae. Regarding the developmental period, C. sexmaculata feeding on M. persicae showed a shorter developmental period (12.21 ± 1.84 days) than those fed with A. fabae (15.34 ± 1.98 days). Similarly, the body length of C. sexmaculata larvae fed with M. persicae reached the longest body at the 2nd and 4th instar stages with average body lengths of 2.87 ± 0.04 mm and 6.33 ± 0.09 mm, respectively.
Conclusions: Myzus persicae can be considered a potential natural diet for mass-rearing C. sexmaculata.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abbas, K., M.S. Zaib, M. Zakria, U. Hani, S.M. Zaka and M.N. Ane. 2020. Cheilomenes sexmaculata (Coccinellidae: Coleoptera) as a potential biocontrol agent for aphids based on age-stage, twosex life table. PLoS ONE 15(9): e0228367. https://doi.org/10.1371/journal.pone.0228367.
Badra, Z., S.L. Herrera, L. Cappellin, F. Biasioli, T. Dekker, S. Angeli and M. Tasin. 2021. Species‑specific induction of plant volatiles by two aphid species in apple: Real time measurement of plant emission and attraction of lacewings in the wind tunnel. J. Chem. Ecol. 47: 653–663. https://doi.org/10.1007/s10886-021-01288-5.
Begum, M., M.K. Mandal, A. Islam and M.A. Howlader. 2018. Biology, nature of insect infestation and control of the aphid, Aphis gossypii (Glover, 1877) (Hemiptera: Aphididae) on arum plant, Colocasia esculenta. Bangladesh J. Zool. 46(1): 63–70. https://doi.org/10.3329/bjz.v46i1.37627.
Cabral, S., A.O. Soares, R. Moura and P. Garcia. 2006. Suitability of Aphis fabae, Myzus persicae (Homoptera: Aphididae) and Aleyrodes proletella (Homoptera: Aleyrodidae) as prey for Coccinella undecimpunctata (Coleoptera: Coccinellidae). Biol. Control 39(3): 434–440. https://doi.org/10.1016/j.biocontrol.2006.08.008.
Chaudhary, D.D., B. Kumar, G. Mishra and Omkar. 2016. Effects of prey resource fluctuation on predation attributes of two sympatric Coccinellidae (Coleoptera). Can. Entomol. 148(4): 443–451. https://doi.org/10.4039/tce.2015.73.
Dixon, A.F.G. 2000. Insect Predator-prey Dynamics: Ladybird Beetles and Biological Control. Cambridge University Press, Cambridge, UK.
Douglas, A.E., L.B. Minto and T.L. Wilkinson. 2001. Quantifying nutrient production by the microbial symbionts in an aphid. J. Exp. Biol. 204(2): 349–358. https://doi.org/10.1242/jeb.204.2.349.
Hodek, I. and A. Honěk. 1996. Ecology of Coccinellidae. Springer Dordrecht, Netherlands.
Iftikhar, A., M.A. Aziz, M. Naeem, M. Ahmad and T. Mukhtar. 2018. Effect of temperature on demography and predation rate of Menochilus sexmaculatus (Coleoptera: Coccinellidae) reared on Phenacoccus solenopsis (Hemiptera: Pseudococcidae). Pakistan J. Zool. 50(5): 1885–1893. http://dx.doi.org/10.17582/journal.pjz/2018.50.5.1885.1893.
Infante-Rivard, C., D. Labuda, M. Krajinovic and D. Sinnett. 1999. Risk of childhood leukemia associated with exposure to pesticides and with gene polymorphisms. Epidemiology 10(5): 481–487.
Knapp, M., M. Řeřicha, D. Haelewaters and E. González. 2022. Fungal ectoparasites increase winter mortality of ladybird hosts despite limited effects on their immune system. Proc. R. Soc. B 289(1971): 20212538. https://doi.org/10.1098/rspb.2021.2538.
Kraus, S., C. Monchanin, T. Gomez-Moracho and M. Lihoreau. 2019. Insect diet, pp. 1–9. In: J. Vonk and T. Shackelford, (Eds.), Encyclopedia of Animal Cognition and Behavior. Springer, Cham, Switzerland.
Kumar, B., M. Bista, G. Mishra and Omkar. 2014. Stage specific consumption and utilization of aphids, conspecific and heterospecific eggs by two species of Coccinella (Coleoptera: Coccinellidae). Eur. J. Entomol. 111(3): 363–369. https://doi.org/10.14411/eje.2014.046.
Lanzoni, A., G. Accineli, G.G. Bazzocchia and G. Burgio. 2004. Biological traits and life table of the exotic Harmonia axyridis compared with Hippodamia variegate, and Adalia bipunctata (Col., Coccinellidae). J. Appl. Entomol. 128(4): 298–306. https://doi.org/10.1111/j.1439-0418.2004.00847.x.
Mahyoub, J.A., A.A.H. Mangoud, KH.M. Al-Ghamdi and H. Ghramh. 2013. Method for mass production the seven spotted lady beetle, Coccinella septempunctata (Coleoptera: Coccinellidae) and suitable manupulation of egg picking technique. Egypt Acad. J. Biol. Sci. 6(3): 31–38. https://doi.org/10.21608/EAJBSA.2013.13227.
Manderfield, M. 2022. Seek, picture insect, google lens: An analysis of popular insect identification apps using photos of realistic quality. Unpublished Manuscript. DigitalCommons@University of Nebraska – Lincoln, Nebraska, USA.
Martin, E.A., B. Feit, F. Requier, H. Friberg and M. Jonsson. 2019. Chapter Three - Assessing the resilience of biodiversity-driven functions in agroecosystems under environmental change. Adv. Ecol. Res. 60: 59–123. https://doi.org/10.1016/bs.aecr.2019.02.003.
Omkar and G. Mishra. 2005. Preference-performance of generalist predatory ladybird: A laboratory study. Biol. Control 34(2): 187–195. https://doi.org/10.1016/j.biocontrol.2005.05.007.
Omkar and S. Srivastava. 2003. Influence of six aphid prey species on development and reproduction of a ladybird beetle, Coccinella septempunctata. BioControl 48: 379–393. https://doi.org/10.1023/A:1024762822955.
Ramzan, Z., S. Khursheed, M.A. Manto, H. Itoo, N. Naseem, F.A. Bhat, G.H. Rather, Z.A. Bhat, M.A. Mir, F.J. Wani and S.A. Ganie. 2023. Life table and reproductive parameters of ladybird beetle, Coccinella undecimpunctata (Linnaeus) (Coleoptera: Coccinellidae) on aphids, Myzus persicae (Sulzer) and Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae). J. Entomol. Res. Soc. 25(3): 507–519. https://doi.org/10.51963/jers.v25i3.2404.
Reznik, S.Y., A.N. Ovchinnikov, O.S. Bezman-Mosekyo, K.G. Samartsev and N.A. Belyakova. 2022. Storage potential of the predatory ladybird Cheilomenes propinqua in relation to temperature, humidity, and factitious food. Insects 13(7): 613. https://doi.org/10.3390/insects13070613.
Rocca, M., E. Rizzo and N.M. Greco. 2020. Larval interactions between two aphidophagous coccinellids in sweet pepper. An. Acad. Bras. Cienc. 92(Suppl. 1): e20181163. https://doi.org/10.1590/0001-3765202020181163.
Sanchez, J.A. and D.R. Gillespie. 2022. Dispersal and distribution of a generalist predator in habitats with multiple food resources. Front. Ecol. Evol. 10: 977689. https://doi.org/10.3389/fevo.2022.977689.
Sánchez-Bayo, F. and K.A.G. Wyckhuys. 2019. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232: 8–27. https://doi.org/10.1016/j.biocon.2019.01.020.
Singh, V., V. Goyal, S. Devi, S. Hooda and V. Malik. 2016. Polymorphism of Cheilomenes sexmaculata (Fabricius) (Coleoptera: Coccinellidae) in Haryana, India. J. Entomol. Zool. Stud. 4(5): 548–551.
Skouras, P.J. and G.J. Stathas. 2015. Development, growth and body weight of Hippodamia variegata fed Aphis fabae in the laboratory. Bull. Insectology 68(2): 193–198.
Staudt. M., B. Jackson, H. El-Aouni, B. Buatois, J.P. Lacroze, J.L. Poëssel, M.H. Sauge and U. Niinemets. 2010. Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative. Tree Physiol. 30(10): 1320–1334. https://doi.org/10.1093/treephys/tpq072.
Tanner, C.M., F. Kamel, G.W. Ross, J.A. Hoppin, S.M. Goldman, M. Korell, C. Marras, G.S. Bhudhikanok, M. Kasten, A.R. Chade, K. Comyns, M.B. Richards, C. Meng, B. Priestley, H.H. Fernandez, F. Cambi, D.M. Umbach, A. Blair, D.P. Sandler and J.W. Langston. 2011. Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect. 119(6): 866–872. https://doi.org/10.1289/ehp.1002839.
UNCTAD (United Nations Conference on Trade and Development). 2013. Trade and Environment Review 2013: Wake Up Before It’s Too Late. Available Source: https://unctad.org/publication/trade-and-environment-review-2013. February 16, 2023.
UNEP (United Nations Environment Programme). 2013. Global chemicals outlook: Towards sound management of chemicals. Available Source: https://www.unep.org/resources/report/globalchemicals-outlook-towards-sound-management-chemicals. February 16, 2023.
Wu, G., F.W. Bazer, Z. Dai, D. Li, J. Wang and Z. Wu. 2014. Amino acid nutrition in animals: Protein synthesis and beyond. Annu. Rev. Anim. Biosci. 2: 387–417. https://doi.org/10.1146/annurevanimal-022513-114113.
Wu, J., H. Lan, Z.F. Zhang, H.H. Cao and T.X. Liu. 2020. Performance and transcriptional response of the green peach aphid Myzus persicae to the restriction of dietary amino acids. Front. Physiol. 11: 487. https://doi.org/10.3389/fphys.2020.00487.