Soil amendment with poultry manure, single super phosphate and Bacillus subtilis inoculant improved performance of cowpea (Vigna unguiculata (L.) Walp.) on sandy loam
Main Article Content
Abstract
Background and Objectives: Phosphorus (P) deficiency often limits the yield of cowpea (Vigna unguiculata (L.) Walp.) on highly weathered soils. Applying biofertilizers and organic fertilizers is a promising alternative to fossil-based fertilizers for improving P availability. The effect of organic and inorganic fertilizers and biofertilizers in improving growth and P uptake in cowpeas is poorly understood. Hence, the response of cowpeas to poultry manure, Bacillus subtilis inoculant, and single super phosphate (SSP) fertilizer was investigated during the 2020 and 2021 cropping seasons.
Methodology: Treatments comprised two cowpea cultivars (FUAMPEA-2 and Ife Brown) and three soil amendments: poultry manure, B. subtilis, SSP fertilizer, and unamended soil, which served as the control. The factorial experiment had eight treatments arranged in a completely randomized design and was replicated six times. Data on collected on leaves, leaf area, stem diameter, yield components, and proximate composition were analyzed with ANOVA and means separated with LSD at P < 0.05.
Main Results: The number of leaves (26.58 ± 18.08), leaf area (5,058 ± 3,472 cm2), and stem diameter (5.61 ± 2.30 mm) of Ife Brown improved significantly on soil augmented with poultry manure. On the contrary, FUAMPEA-2 had a higher number of seeds (33.33 ± 18.97), grain yield/plant (48.23 ± 44.21 g), and harvest index (0.59 ± 0.58) on soil amended with poultry manure. Crude protein (34.2%), crude fat (6.0%), and seed P content of 10.75 g/kg were highest in FUAMPEA-2 sown on soil fertilized with SSP. There was an improvement in essential mineral nutrients in soil supplied with organic fertilizer relative to nutrients recorded on unfertilized soil.
Conclusions: The augmentation of marginal soil with poultry manure enhanced the growth and grain yield of FUAMPEA-2 remarkably while improving biomass accumulation in Ife Brown.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abbadi, J. and J. Gerendás. 2015. Phosphorus use efficiency of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.). J. Plant Nutr. 38(7): 1121–1142. https://doi.org/10.1080/01904167.2014.983115.
Abebe, Z. and H. Feyisa. 2017. Effects of nitrogen rates and time of application on yield of maize: Rainfall variability influenced time of N application. Int. J. Agron. 2017: 1545280. https://doi.org/10.1155/2017/1545280.
Abumere, V.I., O.A. Dada, A.G. Adebayo, F.R. Kutu and A.O. Togun. 2019. Different rates of chicken manure and NPK 15-15-15 enhanced performance of sunflower (Helianthus annuus L.) on ferruginous soil. Int. J. Agron. 2019: 3580562. https://doi.org/10.1155/2019/3580562.
Adedeji, A.A., M.M. Häggblom and O.O. Babalola. 2020. Sustainable agriculture in Africa: Plant growthpromoting rhizobacteria (PGPR) to the rescue. Sci. Afr. 9: e00492. https://doi.org/10.1016/j.sciaf.2020.e00492.
Adekiya, A.O. and T.M. Agbede. 2009. Growth and yield of tomato (Lycopersicon esculentum Mill) as influenced by poultry manure and NPK fertilizer. Emir. J. Food Agric. 21(1): 10–20. https://doi.org/10.9755/ejfa.v21i1.5154.
Adeoye, P.A., S.E. Adebayo and J.J. Musa. 2011. Growth and yield response of cowpea (Vigna unguiculata) to poultry and cattle manure as amendments on sandy loam soil plot. Agric. J. 6(5): 218–221.
Adhya, T.K., N. Kumar, G. Reddy, A.R. Podile, H. Bee and B. Samantaray. 2015. Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Curr. Sci. 108(7): 1280–1287.
Agbede, T.M., S.O. Ojeniyi and A.J. Adeyemo. 2008. Effect of poultry manure on soil physical and chemical properties, growth and grain yield of sorghum in Southwest, Nigeria. Am.-Eurasian J. Sustain. Agric. 2(1): 72–77.
Agbogidi, O.M. and E.O. Egho. 2012. Evaluation of eight varieties of cowpea (Vigna unguiculata (L.) Walp) in Asaba agro-ecological environment, Delta State, Nigeria. Eur. J. Sustain. Dev. 1(2): 303–314.
Alewell, C., B. Ringeval, C. Ballabio, D.A. Robinson, P. Panagos and P. Borrelli. 2020. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 11: 4546. https://doi.org/10.1038/s41467-020-18326-7.
Amanullah and Inamullah. 2016. Dry matter partitioning and harvest index differ in rice genotypes with variable rates of phosphorus and zinc nutrition. Rice Sci. 23(2): 78–87. https://doi.org/10.1016/j.rsci.2015.09.006.
Animasaun, D.A., S. Oyedeji, Y.K. Azeez, O.T. Mustapha and M.A. Azeez. 2015. Genetic variability study among ten cultivars of cowpea (Vigna unguiculata L. Walp) using morpho-agronomic traits and nutritional composition. J. Agric. Sci. 10(2): 119–130.
Aune, J.B. and R. Lal. 1995. The tropical soil productivity calculator - a model for assessing effects of soil management on productivity, pp. 499–520. In: Proceedings of the Soil Management: Experimental Basis for Sustainability and Environmental Quality. Ohio State University, Ohio, USA.
Bashan, Y., L.E. de-Bashan, S. Prabhu and J.P. Hernandez. 2014. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil. 378: 1–33. https://doi.org/10.1007/s11104-013-1956-x.
Berg, G. and K. Smalla. 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68(1): 1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x.
Bhattacharjee, R. and U. Dey. 2014. Biofertilizer, a way towards organic agriculture: A review. Afr. J. Microbiol. Res. 8(24): 2332–2342. https://doi.org/10.5897/AJMR2013.6374.
Bolan, N.S., A.A. Szogi, T. Chuasavathi, B. Seshadri, M.J. Rothrock Jr. and P. Panneerselvam. 2010. Uses and management of poultry litter. Worlds Poult. Sci. J. 66(4): 673–698. https://doi.org/10.1017/S0043933910000656.
Burton, J. 1984. Legume Inoculants and Their Use. Nitrogen Fixation for Tropical Agricultural Legumes (NifTAL) Project, USA, FAO Fertilizer and Plant Nutrition Service, Land and Water Development Division, FAO, Rome, Italy.
Camberato, J. 2001. Land application of poultry manure. In: Confined Animal Manure Managers Certification Program Manual: Poultry Version. Clemson University Extension, South Carolina, USA.
Chaturvedi, G.S., P.K. Aggarwal and S.K. Sinha. 1980. Growth and yield of determinate and indeterminate cowpeas in dryland agriculture. J. Agric. Sci. 94(1): 137–144. https://doi.org/10.1017/S0021859600027982.
Dada, O.A., F.R. Kutu, O.O. Babalola and A.O. Togun. 2020. Promoting biofertilizer utilization for sustainable crop production: Produce quality and human health implications, pp. 37–60. In: M.A. Badejo and A.O. Togun, (Eds.), Strategies and Tactics of Sustainable Agriculture in the Tropics. Volume 3. College Press & Publishers Ltd., Oyo State, Nigeria.
Egamberdieva, D. and A.O. Adesemoye. 2016. Improvement of crop protection and yield in hostile agroecological conditions with PGPR-based biofertilizer formulations, pp. 199–211. In: N. Arora, S. Mehnaz and R. Balestrini, (Eds.), Bioformulations: For Sustainable Agriculture. Springer, New Delhi, India.
Fatokun, C.A., S.A. Tarawali, B.B. Singh, P.M. Kormawa and M. Tamò. 2002. Challenges and opportunities for enhancing sustainable cowpea production. In: Proceedings of the World Cowpea Conference III. International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria.
Fisher, H.J. 1965. Report of the committee on improvement of the AOAC. Journal of the A.O.A.C. 48(1): 222–223. https://doi.org/10.1093/jaoac/48.1.222.
Gerald, W.E. 2004. Role of Rhizobium in nitrogen fixation and transfer in clover plants. World Journal of Microbiology. 26: 37–45.
Haruna, I.M. 2011. Dry matter partitioning and grain yield potential in sesame (Sesamum indicum L.) as influenced by poultry manure, nitrogen and phosphorus at Samaru, Nigeria. J. Agric. Technol. 7(6): 1571–1577.
Hayat, R., S. Ali, U. Amara, R. Khalid and I. Ahmed. 2010. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 60(4): 579–598. https://doi.org/10.1007/s13213-010-0117-1.
IITA (International Institute of Tropical Agriculture). 1990. IITA Annual Report 1990. International Institute of Tropical Agriculture, Ibadan, Nigeria.
Ikram, S., U. Habib and N. Khalid. 2012. Effect of different potting media combinations on growth and vase life of tuberose (Polianthes tuberosa Linn.). Pak. J. Agri. Sci. 49(2): 121–125.
Jackson, M.L. 2005. Soil Chemical Analysis: Advanced Course. Parallel Press, Wisconsin, USA.
Jindo, K., Y. Audette, F.L. Olivares, L.P. Canellas, D.S. Smith and R.P. Voroney. 2023. Biotic and abiotic effects of soil organic matter on the phytoavailable phosphorus in soils: A review. Chem. Biol. Technol. Agric. 10: 29. https://doi.org/10.1186/s40538-023-00401-y.
Kang, S.M., R. Radhakrishnan, Y.H. You, G.J. Joo, I.J. Lee, K.E. Lee and J.H. Kim. 2014. Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian J. Microbiol. 54(4): 427–433. https://doi.org/10.1007/s12088-014-0476-6.
Karikari, B., E. Arkorful and S. Addy. 2015. Growth, nodulation and yield response of cowpea to phosphorus fertilizer application in Ghana. J. Agron. 14(4): 234–240. http://dx.doi.org/10.3923/ja.2015.234.240.
Kebede, E. and Z. Bekeko. 2020. Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food Agric. 6(1): 1769805. https://doi.org/10.1080/23311932.2020.1769805.
Kołodziejczak, K., A. Onopiuk, A. Szpicer and A. Poltorak. 2022. Meat analogues in the perspective of recent scientific research: A review. Foods. 11(1): 105. https://doi.org/10.3390/foods11010105.
Korir, H., N.W. Mungai, M. Thuita, Y. Hamba and C. Masso. 2017. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front. Plant Sci. 8: 141. https://doi.org/10.3389/fpls.2017.00141.
Kour, D., K.L. Rana, A.N. Yadav, N. Yadav, M. Kumar, V. Kumar, P. Vyas, H.S. Dhaliwal and A.K. Saxena. 2020. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal. Agric. Biotechnol. 23: 101487. https://doi.org/10.1016/j.bcab.2019.101487.
Kuan, K.B., R. Othman, K.A. Rahim and Z.H. Shamsuddin. 2016. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE. 11(3): e0152478. https://doi.org/10.1371/journal.pone.0152478.
Kuo, S. 1996. Phosphorus, pp. 869–919. In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston and M.E. Sumner, (Eds.), Methods of Soil Analysis: Part 3 Chemical Methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Wisconsin, USA.
Kutu, F.R., T.J. Mokase, O.A. Dada and O.H.J. Rhode. 2019. Assessing microbial population dynamics, enzyme activities and phosphorus availability indices during phospho-compost production. Int. J. Recycl. Org. Waste Agricult. 8: 87–97. https://doi.org/10.1007/s40093-018-0231-9.
Li, Y.J. and Q.P. Hu. 2020. Studying of the promotion mechanism of Bacillus subtilis QM3 on wheat seed germination based on β-amylase. Open Life Sci. 15(1): 553–560. https://doi.org/10.1515%2Fbiol-2020-0062.
López-Arredondo, D.L., L. Sánchez-Calderón and L. Yong-Villalobos. 2017. Molecular and genetic basis of plant macronutrient use efficiency: concepts, opportunities, and challenges, pp. 1–29. In: M.A. Hossain, T. Kamiya, D.J. Burritt, L.S. Phan Tran and T. Fujiwara, (Eds.), Plant Macronutrient Use Efficiency. Molecular and Genomic Perspectives in Crop Plants. Academic Press, Massachusetts, USA.
Maphosa, Y. and V.A. Jideani. 2017. The role of legumes in human nutrition, pp. 103–121. In: M.C. Hueda, (Ed.), Functional Food-Improve Health through Adequate Food. InTech. http://doi.org/10.5772/intechopen.69127.
Mohammed, S.B., I.F. Mohammad, T.B. Pangirayi, G. Vernon, D.K. Dzidzienyo, M.L. Umar and S. Umar. 2020. Farmers’ knowledge, perception, and use of phosphorus fertilization for cowpea production in Northern Guinea Savannah of Nigeria. Heliyon. 6(10): e05207. https://doi.org/10.1016/j.heliyon.2020.e05207.
Moreno, L.D.A., G.R. Fonseca de Oliveira, T.B. Batista, J.W. Bossolani, K.R. Ducatti, C.C. Guimarães and E.A. Amaral da Silva. 2022. Quality of cowpea seeds: A food security strategy in the tropical environment. PloS ONE. 17(10): e0276136. https://doi.org/10.1371/journal.pone.0276136.
Ndor, E., N.S. Dauda, E.O. Abimuku, D.E. Azagaku and H. Anzaku. 2012. Effect of phosphorus fertilizer and spacing on growth, nodulation count and yield of cowpea (Vigna unguiculata (L) Walp) in Southern Guinea Savanna agroecological zone, Nigeria. Asian J. Agric. Sci. 4(4): 254–257.
Nelson, D.W. and L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter, pp. 961–1010. In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston and M.E. Sumner, (Eds.), Methods of Soil Analysis: Part 3 Chemical Methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Wisconsin, USA.
Ng, E.C., N.T. Dunford and K. Chenault. 2008. Chemical characteristics and volatile profile of genetically modified peanut cultivars. J. Biosci. Bioeng. 106(4): 350–356. https://doi.org/10.1263/jbb.106.350.
Nkomo, G.V., M.M. Sedibe and M.A. Mofokeng. 2021. Production constraints and improvement strategies of cowpea (Vigna unguiculata L. Walp.) genotypes for drought tolerance. Int. J. Agron. 2021: 5536417. https://doi.org/10.1155/2021/5536417.
Noureddini, H. and J. Byun. 2010. Dilute-acid pretreatment of distillers’ grains and corn fiber. Bioresour. Technol. 101(3): 1060–1067. https://doi.org/10.1016/j.biortech.2009.08.094.
Nwaiwu, I.U., D.O. Ohajianya, J.I. Lemchi, U.C. Ibekwe, F.O. Nwosu, N.G. Ben-Chendo, A. Henri-Ukoha and F.A. Kadiri. 2010. Economics of organic manure use by food crop farmers in ecologically vulnerable areas of Imo State, Nigeria. Researcher. 2(11): 56–61.
Ogaraku, A.O. 2007. The effect of animal manures on susceptibility of cowpea Var. moussa local to infection by root-knot nematode; Meloidogyne javanica Treub. Pak. J. Biol. Sci. 10(17): 2980–2983. https://doi.org/10.3923/pjbs.2007.2980.2983.
Omoigui, L.O., A.Y. Kamara, J. Batieno, T. Iorlamen, Z. Kouyate, J. Yirzagla, S. Diallo and U. Garba. 2018. Guide to Cowpea Production in West Africa. International Institute of Tropical Agriculture, Ibadan, Nigeria.
Owusu, E.Y., R. Akromah, N.N. Denwar, J. Adjebeng-Danquah, F. Kusi and M. Haruna. 2018. Inheritance of early maturity in some cowpea (Vigna unguiculata (L.) Walp.) genotypes under rain fed conditions in Northern Ghana. Adv. Agric. 2018: 8930259. https://doi.org/10.1155/2018/8930259.
Pierzynski, J. and G.M. Hettiarachchi. 2018. Reactions of phosphorus fertilizers with and without a fertilizer enhancer in three acidic soils with high phosphorus‐fixing capacity. Soil Sci. Soc. Am. J. 82(5): 1124–1139. https://doi.org/10.2136/sssaj2018.01.0064.
Poitevin, E. 2016. Official methods for the determination of minerals and trace elements in infant formula and milk products: A review. J. AOAC Int. 99(1): 42–52. https://doi.org/10.5740/jaoacint.15-0246.
Prieto, K.R., F. Echaide-Aquino, A. Huerta-Robles, H.P. Valério, G. Macedo-Raygoza, F.M. Prado, M.H.G. Medeiros, H.F. Brito, I.G.N. da Silva, M.C.F. Cunha Felinto, J.F. White Jr., P.D. Mascio and M.J. Beltran-García. 2017. Endophytic bacteria and rare earth elements; promising candidates for nutrient use efficiency in plants, pp. 285–306. In: M.A. Hossain, T. Kamiya, D.J. Burritt, L.S. Phan Tran and T. Fujiwara, (Eds.), Plant Macronutrient Use Efficiency. Molecular and Genomic Perspectives in Crop Plants. Academic Press, Massachusetts, USA.
Rawal, N., K.R. Pande, R. Shrestha and S.P. Vista. 2022. Phosphorus and potassium mineralization as affected by phosphorus levels and soil types under laboratory condition. Agrosyst. Geosci. Environ. 5(1): e20229. https://doi.org/10.1002/agg2.20229.
Rawal, V. and D.K. Navarro. 2019. The Global Economy of Pulses. FAO, Rome, Italy.
Reyhan, M.K. and F. Amiraslani. 2006. Studying the relationship between vegetation and physicochemical properties of soil, case study: Tabas region, Iran. Pak. J. Nutr. 5(2): 169–171. https://doi.org/10.3923/pjn.2006.169.171.
Sánchez-Navarro, V., R. Zornoza, Á. Faz and J.A. Fernández. 2021. Cowpea crop response to mineral and organic fertilization in SE Spain. Processes. 9(5): 822. https://doi.org/10.3390/pr9050822.
Schoenau, J.J. and I.P. O’Halloran. 2007. Sodium bicarbonate-extractable phosphorus, pp. 89–94. In: M.R. Carter and E.G. Gregorich, (Eds.), Soil Sampling and Methods of Analysis. 2nd Edition. CRC Press, Boca Raton, Florida, USA.
Sha, L. and Y.L. Xiong. 2020. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends Food Sci. Technol. 102: 51–61. https://doi.org/10.1016/j.tifs.2020.05.022.
Sharma, S.B., R.Z. Sayyed, M.H. Trivedi and T.A. Gobi. 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2: 587. https://doi.org/10.1186%2F2193-1801-2-587.
Shehu, B.M., J.M. Jibrin and A.M. Samndi. 2015. Fertility status of selected soils in the Sudan Savanna biome of Northern Nigeria. Int. J. Soil Sci. 10(2): 74–83. http://doi.org/10.3923/ijss.2015.74.83.
Simion, T. 2018. Adaptability performances of cowpea [Vigna unguiculata (L.) Walp] genotypes in Ethiopia. Food Science Quality Management. 72: 43–47.
Singh, S., S. Dutta and S. Inamdar. 2014. Land application of poultry manure and its influence on spectrofluorometric characteristics of dissolved organic matter. Agric. Ecosyst. Environ. 193: 25–36. https://doi.org/10.1016/j.agee.2014.04.019.
Tsado, P.A., O.A. Osunde, C.A. Igwe, M.K.A. Adeboye and B.A. Lawal. 2012. Phosphorus sorption characteristics of some selected soil of the Nigerian Guinea Savanna. Int. J. Agrisci. 2(7): 613–618.
Ubah, J., O. Fagbola and S.E. Aladele. 2012. Growth of two cowpea [Vigna unguiculata (L.) Walp.] varieties as influenced by arbuscular mycorrhizal fungi and Tithonia (Tithonia diversifolia Hemsl.) application under screen house conditions. Crop Res. 44(3): 338–343.
Verzeaux, J., A. Alahmad, H. Habbib, E. Nivelle, D. Roger, J. Lacoux, G. Decocq, B. Hirel, M. Catterou, F. Spicher, F. Dubois, J. Duclercq and T. Tetu. 2016. Cover crops prevent the deleterious effect of nitrogen fertilisation on bacterial diversity by maintaining the carbon content of ploughed soil. Geoderma. 281: 49–57. https://doi.org/10.1016/j.geoderma.2016.06.035.
Walkley, A. 1935. An examination of methods for determining organic carbon and nitrogen in soils. (With one text-figure.). J. Agric. Sci. 25(4): 598–609. https://doi.org/10.1017/S0021859600019687.
Waziri, M.I. and B.Y. Kaltungo. 2017. Poultry litter selection, management and utilization in the tropics, pp. 191–209. In: M. Manafi, (Ed.), Poultry Science. InTech. http://doi.org/10.5772/65036.
Weih, M., A. Westerbergh and P.O. Lundquist. 2017. Role of nutrient-efficient plants for improving crop yields: Bridging plant ecology, physiology, and molecular biology, pp. 31–44. In: M.A. Hossain, T. Kamiya, D.J. Burritt, L.S. Phan Tran and T. Fujiwara, (Eds.), Plant Macronutrient Use Efficiency. Molecular and Genomic Perspectives in Crop Plants. Academic Press, Massachusetts, USA.
Wortman, S.E., C.S. Wortmann, A.L. Pine, C.A. Shapiro, A.A. Thompson and R.S. Little. 2017. Nutrient Management in Organic Farming. University of Nebraska-Lincoln Extension, Nebraska, USA.