Impact of greenhouse height on growth, physiological changes, and yield of two cherry tomatoes (Solanum lycopersicum) cultivars

Main Article Content

Premkamon Jitpong
Janyaporn Jannoi
Wittaya Sastawittaya
Ryosuke Mega
Pariyanuj Chulaka
Jutiporn Thussagunpanit

Abstract


Background and Objective: Cherry tomato is a vegetable that has high commercial demand. The objective of this study was to compare the growth, physiological changes, and yield of tomatoes grown in different heights of the greenhouse and in 2 cultivars of cherry tomatoes.
Methodology: The experimental design was a split plot in a completely randomized design. The main plot was two types of greenhouses (3 m height and 4 m height greenhouses), and the sub-plot was two cultivars of cherry tomato (‘Dang Komen’ and ‘Red Cherry 603’).
Main Results: The heights of the greenhouse and cultivars did not affect stem height and amount of inflorescences/plant. Measurement of physiological changes found that the maximum quantum efficiency of photosystem II (Fv/Fm) of tomato plants grown in the 3 m height green-house (0.67 ± 0.03) was significantly lower than those grown in the 4 m height greenhouse (0.70 ± 0.02) at P < 0.05. In addition, the Fv/Fm of tomato ‘Dang Komen’ (0.67 ± 0.03) was significantly lower than tomato ‘Red Cherry 603’ (0.70 ± 0.02) at P < 0.05. After harvesting, tomato ‘Red Cherry 603’ had a significantly higher percentage of fruit set/plant (15.12 ± 2.26%) and the total yield/plant (322.59 ± 59.90 g) than tomato ‘Dang Komen’ (3.20 ± 0.58% and 80.72 ± 19.97 g, respectively) at P < 0.05. Furthermore, tomato ‘Red Cherry 603’ grown in a 3 m height greenhouse exhibited the highest ascorbic acid, lycopene, and β-carotene contents (341.25 ± 14.93, 11.44 ± 0.08, and 5.88 ± 0.10 mg/kg FW, respectively).
Conclusions: Cherry tomatoes grown in a 4 m height greenhouse showed a high level of quantum efficiency. Tomato ‘Red Cherry 603’ exhibited the highest yield. Growing tomatoes in a 3 m height greenhouse caused the highest content of ascorbic acid, lycopene, and β-carotene.


Article Details

Section
Research Articles

References

Alsamir, M., T. Mahmood, R. Trethowan and N. Ahmad. 2021. An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi J. Biol. Sci. 28(3): 1654–1663. https://doi.org/10.1016/j.sjbs.2020.11.088.

Anthon, G. and D.M. Barrett. 2007. Standardization of a rapid spectrophotometric method for lycopene. Acta Hortic. 758: 111–128. https://doi.org/10.17660/ActaHortic.2007.758.12.

AOAC (International Official Methods of Analysis). 2000. Acidity (Titratable) of Fruit Products. Official Method 942.15. Official Methods of Analysis of AOAC International. 17th Edition. AOAC International, Maryland, USA.

Atherton, J.G. and J. Rudich. 1986. The Tomato Crop: A Scientific Basis for Improvement. Chapman and Hall, London, UK.

Ayenan, M.A.T., A. Danquah, P. Hanson, C. Ampomah-Dwamena, F.A.K. Sodedji, I.K. Asante and E.Y. Danquah. 2019. Accelerating breeding for heat tolerance in tomato (Solanum lycopersicum L.): An integrated approach. Agronomy 9(11): 720. https://doi.org/10.3390/agronomy9110720.

Berry, S.Z. and M.R. Uddin. 1988. Effect of high temperature on fruit set in tomato cultivars and selected germplasm. HortScience 23(3): 606–608. https://doi.org/10.21273/HORTSCI.23.3.606.

Björkman, O. and B. Demmig. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489–504. https://doi.org/10.1007/bf00402983.

Department of Agriculture. 2017. Announcement Requesting Registration of Cultivars. Department of Agriculture, Bangkok, Thailand.

Flores, P., E. Sánchez, J. Fenoll and P. Hellín. 2017. Genotypic variability of carotenoids in traditional tomato cultivars. Food Res. Int. 100: 510–516. https://doi.org/10.1016/j.foodres.2016.07.014.

Gemici, M., B. Türkyilmaz and K. Tan. 2006. Effect of 2,4-D and 4-CPA on yield and quality of the tomato, Lycopersicon esculentum Miller. JFS. 29: 24–32.

Gharezi, M., N. Joshi and E. Sadeghian. 2012. Effect of post harvest treatment on stored cherry tomatoes. J. Nutr. Food Sci. 2(8): 157. http://dx.doi.org/10.4172/2155-9600.1000157.

Gonzali, S., A. Mazzucato and P. Perata. 2009. Purple as a tomato: Towards high anthocyanin tomatoes. Trends Plant Sci. 14(5): 237–241. https://doi.org/10.1016/j.tplants.2009.02.001.

Hemming, S., F. de Zwart, A. Elings, I. Righini and A. Petropoulou. 2019. Remote control of greenhouse vegetable production with artificial intelligence—greenhouse climate, irrigation, and crop production. Sensors 19(8): 1807. https://doi.org/10.3390/s19081807.

Hirich, A. and R. Choukr-Allah. 2017. Water and energy use efficiency of greenhouse and net house under desert conditions of UAE: Agronomic and economic analysis, pp. 481–499. In: O. Abdalla, A. Kacimov, M. Chen, A. Al-Maktoumi, T. Al-Hosni and I. Clark, (Eds.), Water Resources in Arid Areas: The Way Forward. Springer, Cham, Switzerland.

Islam, M.Z., Y.T. Lee, M.A. Mele, I.L. Choi and H.M. Kang. 2019. Effect of fruit size on fruit quality, shelf life and microbial activity in cherry tomatoes. AIMS Agric. Food. 4(2): 340–348. https://doi.org/10.3934/agrfood.2019.2.340.

Khan, T.A., M. Mazid and F. Mohammad. 2011. Ascorbic acid: An enigmatic molecule to developmental and environmental stress in plant. Int. J. Appl. Biol. Pharm. Technol. 2(3): 468–483.

Kumar, B. 2011. Technical Standards for Naturally Ventilated, Fan & Pad Green House and Shade Net House. Ministry of Agriculture, Gurgaon, India.

Lee, S.K. and A.A. Kader. 2000. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 20(3): 207–220. https://doi.org/10.1016/S0925-5214(00)00133-2.

Maxwell, K. and G.N. Johnson. 2000. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51(345): 659–668. https://doi.org/10.1093/jexbot/51.345.659.

Mesa, T., J. Polo, A. Arabia, V. Caselles and S. Munné-Bosch. 2022. Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality. J. Plant Physiol. 268: 153581. https://doi.org/10.1016/j.jplph.2021.153581.

NOAA (National Oceanic and Atmospheric Administration). 2023. Parcel theory. National Oceanic and Atmospheric Administration. Available Source: https://www.noaa.gov. July 29, 2024.

Nokkaew, C. 2023. New tomato variety: Virus resistance, farmer safety, and cost reduction. Available Source: https://www.bangkokbiznews.com/tech/868855. November 20, 2024.

Nederhoff, E.M. 1994. Effects of CO2 Concentration on Photosynthesis, Transpiration and Production of Greenhouse Fruit Vegetable Crops. PhD Thesis, Wageningen University, Netherlands.

Pandurangaiah, S., A.T. Sadashiva, K.S. Shivashankar, R.D.V. Sudhakar and K.V. Ravishankar. 2020. Carotenoid content in cherry tomatoes correlated to the color space values L*, a*, b*: A non-destructive method of estimation. J. Hortic. Sci. 15(1): 27–34. https://doi.org/10.24154/jhs.v15i1.779.

Panthee, D.R. and R.G. Gardner. 2011. ‘Mountain Majesty’: A tomato spotted wilt virus-resistant fresh market hybrid tomato and its parents NC 714 and NC 1CS. HortScience 46(9): 1321–1323. https://doi.org/10.21273/HORTSCI.46.9.1321.

Pérez-Marín, J., H. Issa-Issa, J. Clemente-Villalba, J.M. García-Garví, F. Hernández, Á.A. Carbonell-Barrachina, Á. Calín-Sánchez and L. Noguera-Artiaga. 2021. Physicochemical, volatile, and sensory characterization of promising cherry tomato (Solanum lycopersicum L.) cultivars: Fresh market aptitudes of pear and round fruits. Agronomy 11(4): 618. https://doi.org/10.3390/agronomy11040618.

Ravier, C., M. Quemada and M.H. Jeuffroy. 2017. Use of a chlorophyll meter to assess nitrogen nutrition index during the growth cycle in winter wheat. Field Crops Res. 214: 73–82. https://doi.org/10.1016/j.fcr.2017.08.023.

Razzaq, M.K., S. Rauf, M. Khurshid, S. Iqbal, J.A. Bhat, A. Farzand, A. Riaz, G. Xing and J. Gai. 2019. Pollen viability an index of abiotic stresses tolerance and methods for the improved pollen viability. Pak. J. Agric. Res. 32(4): 609–624. https://dx.doi.org/10.17582/journal.pjar/2019/32.4.609.624.

Resh, H.M. 2012. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower. CRC Press, Florida, USA.

Sato, S., M.M. Peet and J.F. Thomas. 2000. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ. 23(7): 719–726. https://doi.org/10.1046/j.1365-3040.2000.00589.x.

Scott, J.W., R.B. Volin, H.H. Bryan and S.M. Olson. 1986. Use of hybrids to develop heat tolerant tomato cultivars. Proc. Fla. State Hort. Soc. 99: 311–315.

Sethi, V.P., R.K. Dubey and A.S. Dhath. 2009. Design and evaluation of modified screen net house for off-season vegetable raising in composite climate. Energy Convers. Manag. 50(12): 3112–3128. https://doi.org/10.1016/j.enconman.2009.08.001.

Takebe, M. and T. Yoneyama. 1995. An analysis of nitrate and ascorbic acid in crop exudates using a simple reflection photometer system. JSSSPN. 66(2): 155–158. https://doi.org/10.20710/dojo.66.2_155.

Tenga, A.Z., B.A. Marie and D.P. Ormrod. 1989. Leaf greenness meter to assess ozone injury to tomato leaves. HortScience 24(3): 514. https://doi.org/10.21273/HORTSCI.24.3.514.

Van Ploeg, D. and E. Heuvelink. 2005. Influence of sub-optimal temperature on tomato growth and yield: A review. J. Hortic. Sci. Biotechnol. 80(6): 652–659. https://doi.org/10.1080/14620316.2005.11511994.

Vijayakumar, A., S. Shaji, R. Beena, S. Sarada, T.S. Rani, R. Stephen, R.V. Manju and M.M. Viji. 2021. High temperature induced changes in quality and yield parameters of tomato (Solanum lycopersicum L.) and similarity coefficients among genotypes using SSR markers. Heliyon 7(2): e05988. https://doi.org/10.1016/j.heliyon.2021.e05988.

Villareal, R.L. and S.H. Lai. 1979. Development of heat tolerant tomato varieties in the tropics, pp. 188–200. In: Proceedings of the International Symposium on Tropical Tomato. The World Vegetable Center, Taiwan.

Xu, S., X. Sun, H. Lu, H. Yang, Q. Ruan, H. Huang and M. Chen. 2018. Detecting and monitoring the flavor of tomato (Solanum lycopersicum) under the impact of postharvest handlings by physicochemical parameters and electronic nose. Sensors 18(6): 1847. https://doi.org/10.3390/s18061847.