Promoting fruit set and increasing yield of cherry tomatoes with gibberellin
Main Article Content
Abstract
Background and Objective: High summer temperatures can reduce cherry tomato yield. Gibberellic acid (GA3) has been shown to improve fruit sets in some plants. This study aimed to compare the effects of GA3 on fruit set and yield in two cherry tomato cultivars, ‘Sweet Boy’ and ‘Sweet Girl,’ grown in a greenhouse during the summer months with high temperatures.
Methodology: A 2 × 5 factorial experiment in a randomized complete block design (RCBD) was conducted to assess the responses of the two cherry tomato cultivars to five different GA3 concentrations (0, 50, 100, 150, and 200 mg/L) (n = 15). Flower inflorescences were sprayed with GA3 at 0, 2, and 4 days after anthesis (DAA). Data were analyzed to determine means and standard deviations. Statistical analysis was performed using ANOVA, followed by Duncan’s Multiple Range Test at a 95% confidence level.
Main Results: Applying 50 and 100 mg/L GA3 increased the fruit set of ‘Sweet Boy’ cherry tomato from 72.9 ± 5.9% to 90.6 ± 2.3% and 93.6 ± 2.0%, respectively (P < 0.05), but GA3 did not affect ‘Sweet Girl’ cherry tomato fruit set, which remained consistently around 91.7 ± 1.9%. The highest yield was obtained by applying 100 mg/L of GA3 to the ‘Sweet Boy’ cherry tomato, reaching an average of 291.2 ± 113.1 g/cluster. In contrast, the yield of the ‘Sweet Girl’ cherry tomato remained relatively consistent across different GA3 concentrations at 187.6 ± 17.6 g/cluster.
Conclusions: The application of GA3 can enhance fruit set and yield in greenhouse-grown cherry tomatoes during the summer when applied at appropriate concentrations. Cultivar responses to GA3 may differ. In this study, spraying 100 mg/L GA3 on 0, 2, and 4 DAA significantly increased fruit set and yield in the ‘Sweet Boy’ cherry tomato.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ajwang, P.O. and H.J. Tantau. 2005. Prediction of the effect of insect-proof screens on climate in a naturally ventilated greenhouse in humid tropical climates. Acta Hortic. 691: 449–456. https://doi.org/10.17660/ActaHortic.2005.691.54.
Bagale, P., S. Pandey, P. Regmi and S. Bhusal. 2022. Role of plant growth regulator “gibberellins” in vegetable production: An overview. Int. J. Hortic. Sci. Technol. 9(3): 291–299. https://doi.org/10.22059/ijhst.2021.329114.495.
Chomphu, P., K. Lim, P. Phuangthonglang and W. Jinagool. 2023. Influences of gibberellic acid on fruit setting and yield of cherry tomato produced under greenhouse conditions in summer. Khon Kaen Agr. J. 51(Suppl. 3): 239–244.
de Jong, M., C. Mariani and W.H. Vriezen. 2009. The role of auxin and gibberellin in tomato fruit set. J. Exp. Bot. 60(5): 1523–1532. https://doi.org/10.1093/jxb/erp094.
de Oliveira, M.O.A., S.M.F. Alves, E.F.M. Freitas, H.F.L. de Faria and C.F. Lisboa. 2017. Relative chlorophyll index on doses of nitrogen fertilization for cherry tomato culture. Afr. J. Agric. Res. 12(39): 2946–2953. https://doi.org/10.5897/AJAR2016.12051.
Falcioni, R., T. Moriwaki, C.M. Bonato, L.A. de Souza, M.R. Nanni and W.C. Antunes. 2017. Distinct growth light and gibberellin regimes alter leaf anatomy and reveal their influence on leaf optical properties. Environ. Exp. Bot. 140: 86–95. https://doi.org/10.1016/j.envexpbot.2017.06.001.
Gelmesa, D., B. Abebie and L. Desalegn. 2010. Effects of gibberellic acid and 2, 4-dichlorophenoxyacetic acid spray on fruit yield and quality of tomato (Lycopersicon esculentum Mill.). J. Plant Breed. Crop Sci. 2(10): 316–324.
Guo, Y., G. Ren, K. Zhang, Z. Li, Y. Miao and H. Guo. 2021. Leaf senescence: Progression, regulation, and application. Mol. Hortic. 1: 5. https://doi.org/10.1186/s43897-021-00006-9.
He, H. and C. Yamamuro. 2022. Interplays between auxin and GA signaling coordinate early fruit development. Hortic. Res. 9: uhab078. https://doi.org/10.1093/hr/uhab078.
Highland Research and Development Institute. 2015. Cherry tomato. Available Source: https://hkm.hrdi.or.th/knowledge/detail/54. June 14, 2024.
Home Garden. 2022. Product: ‘Sweet Boy’ and ‘Sweet Girl’ cherry tomatoes. Available Source: https://www.chiataiseed.com/ct-homegarden/?s=%E0%B8%A1%E0%B8%B0%E0%B9%80%E0%B8%82%E0%B8%B7%E0%B8%AD%E0%B9%80%E0%B8%97%E0%B8%A8%E0%B9%80%E0%B8%8A%E0%B8%AD%E0%B8%A3%E0%B8%B5%E0%B9%88. May 23, 2024.
Hu, J., A. Israeli, N. Ori and T.P. Sun. 2018. The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. Plant Cell. 30(8): 1710–1728. https://doi.org/10.1105/tpc.18.00363.
Iqbal, N., R. Nazar, M.I.R. Khan, A. Masood and N.A. Khan. 2011. Role of gibberellins in regulation of source–sink relations under optimal and limiting environmental conditions. Curr. Sci. 100(7): 998–1007.
Jinagool, W., K. Kiatko, T. Jirajitmeechai and A. Intrapasert. 2020. Effects of auxin on production of cherry tomato under greenhouse in summer season. pp. 3621–3628. In: Proceedings of the 17th National Kasetsart University Kamphaeng Saen Conference. Nakhon Pathom, Thailand.
Kappel, F. and R.A. MacDonald. 2002. Gibberellic acid increases fruit firmness, fruit size, and delays maturity of ‘sweetheart’ sweet cherry. J. Am. Pomol. Soc. 56: 219–222.
Kazemi, M. 2014. Effect of gibberellic acid and potassium nitrate spray on vegetative growth and reproductive characteristics of tomato. J. Biol. Environ. Sci. 8(22): 1–9.
Khan, N.A., S. Singh, R. Nazar and P.M. Lone. 2007. The source–sink relationship in mustard. Asian Australas. J. Plant Sci. Biotechnol. 1(1): 10–18.
Kuo, C.G. and C.T. Tsai. 1984. Alternation by high temperature of auxin and gibberellin concentration in the floral buds, flowers and young fruit of tomato. HortScience. 19(6): 870–872. https://doi.org/10.21273/HORTSCI.19.6.870.
Li, W., F. Xiang, Y. Su, Z. Luo, W. Luo, L. Zhou, H. Liu and L. Xiao. 2021. Gibberellin increases the bud yield and theanine accumulation in Camellia sinensis (L.) Kuntze. Molecules. 26(11): 3290. https://doi.org/10.3390/molecules26113290.
Luitel, B.P., T.J. Lee and W.H. Kang. 2015. Fruit set and yield enhancement in tomato (Lycopersicon esculentum Mill.) using gibberellic acid and 2, 4-dichlorophenoxy acetic acid spray. J. Bio-Env. Con. 24(1): 27–33. https://doi.org/10.12791/KSBEC.2015.24.1.027.
Mesbah Uddin, A.S.M., J. Gomasta, M. Torikul Islam, M. Islam, E. Kayesh and M.R. Karim. 2024. Gibberellic acid spray modulates fruiting, yield, quality, and shelf life of rambutan (Nephelium lappaceum L.). J. Hort. Res. 32(1): 51–66. https://doi.org/10.2478/johr-2024-0004.
Nie, J., Y.H. Li, X. Yang, J.R. Zheng, Y.M. Xie and L.L. Shi. 2023. Effects of fertilization treatment on growth, yield, fruit quality, and nutrition accumulation of cherry tomato. Appl. Ecol. Environ. Res. 21(5): 3849–3863. http://dx.doi.org/10.15666/aeer/2105_38493863.
Office of Agricultural Economics. 2024. Agricultural economics data: Tomatoes. Available Source: https://www.oae.go.th/assets/portals/1/files/tomato%2066.pdf. May 23, 2024.
Park, B.M., H.B. Jeong, E.Y. Yang, M.K. Kim, J.W. Kim, W. Chae, O.J. Lee, S.G. Kim and S. Kim. 2023. Differential responses of cherry tomatoes (Solanum lycopersicum) to long-term heat stress. Horticulturae. 9(3): 343. https://doi.org/10.3390/horticulturae9030343.
Park, J.H. and S.P. Malka. 2022. Gibberellic acid (GA3) and its role in fruit development and quality. Plant Sci. 316: 111239. https://doi.org/10.3389/fpls.2022.1045761.
Pattanachatchai, N., P. Promata and R. Ruamjai. 2020. Effect of gibberellic acid (GA3) on fruit set and fruit development of commercial variety tomato (Lycopersicon esculentum Mill) grown in pot under summer condition. J. Agric. Res. Ext. 37(2): 1–11.
Prasad, R.N., S.K. Singh, R.B. Yadava and S.N.S. Chaurasia. 2013. Effects of ww and NAA on growth and yield of tomato. Veg. Sci. 40(2): 195–197.
Quinet, M., T. Angosto, F.J. Yuste-Lisbona, R. Blanchard-Gros, S. Bigot, J.P. Martinez and S. Lutts. 2019. Tomato fruit development and metabolism. Front. Plant Sci. 10: 1554. https://doi.org/10.3389/fpls.2019.01554.
Ritonga, F.N., D. Zhou, Y. Zhang, R. Song, C. Li, J. Li and J. Gao. 2023. The roles of gibberellins in regulating leaf development. Plants. 12(6): 1243. https://doi.org/10.3390/plants12061243.
Sandoval-Villa, M., C.W. Wood and E.A. Guertal. 2002. Tomato leaf chlorophyll meter readings as affected by variety, nitrogen form, and nighttime nutrient solution strength. J. Plant Nutr. 25(10): 2129–2142. https://doi.org/10.1081/PLN-120014065.
Sato, S., M.M. Peet and J.F. Thomas. 2002. Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J. Exp. Bot. 53(371): 1187–1195. https://doi.org/10.1093/jexbot/53.371.1187.
Serrani, J.C., R. Sanjuán, O. Ruiz-Rivero, M. Fos and J.L. García-Martínez. 2007. Gibberellin regulation of fruit set and growth in tomato. Plant Physiol. 145(1):246–257. https://doi.org/10.1104/pp.107.098335.
Seymour, G.B., L. Østergaard, N.H. Chapman, S. Knapp and C. Martin. 2013. Fruit development and ripening. Annu. Rev. Plant Biol. 64: 219–241. https://doi.org/10.1146/annurev-arplant-050312-120057.
Shah, S.H., S. Islam, F. Mohammad and M.H. Siddiqui. 2023. Gibberellic acid: A versatile regulator of plant growth, development and stress responses. J. Plant Growth Regul. 42: 7352–7373. https://doi.org/10.1007/s00344-023-11035-7.
Shinozaki, Y., B.P. Beauvoit, M. Takahara, S. Hao, K. Ezura, M.H. Andrieu, K. Nishida, K. Mori, Y. Suzuki, S. Kuhara, H. Enomoto, M. Kusano, A. Fukushima, T. Mori, M. Kojima, M. Kobayashi, H. Sakakibara, K. Saito, Y. Ohtani, C. Bénard, D. Prodhomme, Y. Gibon, H. Ezura and T. Ariizumi. 2020. Fruit setting rewires central metabolism via gibberellin cascades. PNAS. 117(38): 23970–23981. https://doi.org/10.1073/pnas.2011859117.
Sitathani, K. 2002. Environmental Conditions and Tomato Cultivation in Various Seasons. Tropical Vegetable Research Center, Nakhon Pathom, Thailand.
Sitathani, K. 2012. Cherry Tomato Cultivation in Central Thailand. Tropical Vegetable Research Center, Nakhon Pathom, Thailand.
Su, W.R., W.S. Chen, M. Koshioka, L.N. Mander, L.S. Hung, W.H. Chen, Y.M. Fu and K.L. Huang. 2001. Changes in gibberellin levels in the flowering shoot of Phalaenopsis hybrida under high temperature conditions when flower development is blocked. Plant Physiol. Biochem. 39(1): 45–50. https://doi.org/10.1016/S0981-9428(00)01218-3.
Wu, M., K. Liu, H. Li, Y. Li, Y. Zhu, D. Su, Y. Zhang, H. Deng, Y. Wang and M. Liu. 2024. Gibberellins involved in fruit ripening and softening by mediating multiple hormonal signals in tomato. Hortic. Res. 11(2): uhad275. https://doi.org/10.1093/hr/uhad275.
Zhou, R., K.H. Kjær, E. Rosenqvist, X. Yu, Z. Wu and C.O. Ottosen. 2017. Physiological response to heat stress during seedling and anthesis stage in tomato genotypes differing in heat tolerance. J. Agron. Crop Sci. 203(1): 68–80. https://doi.org/10.1111/jac.12166.