Productivity of auxin-treated sugarcane bud chip under field conditions

Main Article Content

Darwin M. Cacal
Janet P. Pablo
Darwin A. Basquial
Esther Josephine D. Sagalla
Leila Mary A. Ayban

Abstract

Background and Objective: Sugarcane (Saccharum officinarum) is a key crop for sugar and bioethanol. Traditional propagation uses much seed cane, raising costs. The bud chip technique reduces seed use efficiently. Auxins enhance growth and yield. This study evaluated auxin-treated bud chips under field conditions, focusing on growth, yield, and economic efficiency.
Methodology: This study evaluated the performance of auxin-treated sugarcane bud chips under field conditions. The experiment utilized a randomized complete block design (RCBD) with 11 treatment combinations, including a control treatment using untreated seed cane. The remaining treatments involved bud chip soaked in various auxin soaking durations and concentrations (10, 20, and 30 minutes soaking at 150, 200, and 250 ppm) prior to planting. Data were collected on survival counts, plant height, internodal length, number of tillers, biomass yield, amount of juice, cane yield per plot at harvest, and return on investment (ROI).
Main Results: Sugarcane propagated through the bud chip method and treated with auxin at 200 ppm consistently outperformed non-treated and seed cane methods in terms of growth and yield parameters. Soaking durations of 10, 20, and 30 minutes at 200 ppm auxin significantly enhanced plant height, internodal length, number of tillers, biomass yield, juice extract, and cane yield per hectare. Among all treatments, 30 minutes of soaking at 200 ppm auxin produced the best results, achieving the highest ROI of 223.09 ± 38.90%. These auxin-treated bud chip propagations are more effective than seed cane and non-auxin treatments, and 30 minutes of soaking at 200 ppm is the most advantageous in growth, yield, and profitability.
Conclusions: These findings confirm that auxin-treated sugarcane bud chips significantly enhance growth, yield, and profitability, offering a cost-effective and sustainable alternative to conventional sugarcane propagation. It provides technological options for farmers, researchers, and industry stakeholders aiming to optimize sugarcane.

Article Details

Section
Research Articles

References

Adem, M., L. Sharma, G.S. Shekhawat, M. Šafranek and J. Jásik. 2024. Auxin signaling, transport, and regulation during adventitious root formation. Curr. Plant Biol. 40: 100385. https://doi.org/10.1016/j.cpb.2024.100385.

Arain, S., G.M. Kaloi, S. Ahmad, M.A. Rajput, A.H. Mari, W.H. Al-Qahtani, I.A. Saleh, N. Zomot, B.H. Kiani and A.A. Abro. 2024. The effect of dichlorophenoxyacetic acid (2,4-d) concentrations on callus induction in sugarcane (Saccharum officinarum). Appl. Ecol. Environ. Res. 22(5): 4951–4960. http://dx.doi.org/10.15666/aeer/2205_49514960.

Ashraf, M.I., S. Sajad and R. Iqbal. 2018. Effect of plant growth regulators (Iba and 2, 4-D) on the morphology and biochemical characteristics of radish (Raphanus sativus L.). Int. J. Appl. Sci. Res. Rev. 5(2): 6. https://doi.org/10.21767/2394-9988.100071.

Begum, M., B.C. Bordoloi, N.J. Ojha, K. Kurmi, R. Das, D.D. Singha and K. Pathak. 2024. Performance of sugarcane bud chip settlings under different integrated nutrient management practices. Sugar Tech. 26(1): 254–263. https://doi.org/10.1007/s12355-023-01327-3.

Begum, M., N.J. Ojha, B. Sarmah and S. Paul. 2022. Bud chip seedling-a new propagating technique in sugarcane production: An overview. Agric. Rev. 45(3): 488–494. https://doi.org/10.18805/ag.R-2384.

Bhattacharya, A. 2021. Role of plant growth hormones during soil water deficit: A review, pp. 489–583. In: Soil Water Deficit and Physiological Issues in Plants. Springer, Singapore.

Dean, M.R.U., M.C. Asen and R.R. Prasad. 2024. Influence of environment on propagation and germination of sugarcane, pp. 29–51. In: K.K. Verma, X. Song, R. de Mello Prado, J. Wu and Y. Li, (Eds.), Sugarcane Cultivation and Management. Apple Academic Press, New York, USA.

Fahad, S., S. Hussain, A. Matloob, F.A. Khan, A. Khaliq, S. Saud, S. Hassan, D. Shan, F. Khan, N. Ullah, M. Faiq, M.R. Khan, A.K. Tareen, A. Khan, A. Ullah, N. Ullah and J. Huang. 2015. Phytohormones and plant responses to salinity stress: A review. Plant Growth Regul. 75(2): 391–404. https://doi.org/10.1007/s10725-014-0013-y.

Garcia, N.S., F.E. Dayan, E.R. Camargo, B.C. Ceolin, S. Deuner and L.A. de Avila. 2025. Auxin‐mimic herbicides dilema: Their benefits and limitations. Pest Manag. Sci. 81(9): 4973–4992. https://doi.org/10.1002/ps.8913.

Gouraj, M.A. 2023. The effects of naphthaleneacetic acid on the rooting of Cycas revoluta bulbs. J. Ornam. Plants. 13(3): 169–179.

Guan, L., R. Tayengwa, Z. Cheng, W.A. Peer, A.S. Murphy and M. Zhao. 2019. Auxin regulates adventitious root formation in tomato cuttings. BMC Plant Biol. 19: 435. https://doi.org/10.1186/s12870-019-2002-9.

Hussain, I., M. Ali, I. Bakhsh and M.W.I. Malik. 2021. Effect of different levels of naphthalene acetic acid at various phenological stages of hybrid sorghum to enhance fodder productivity. Pak. J. Agric. Res. 34(1): 121–127. http://dx.doi.org/10.17582/journal.pjar/2021/34.1.121.127.

Jahan, M.A.H.S., A. Hossain, J.A.T. da Silva, A.E. Sabagh, M.H. Rashid and C. Barutçular. 2019. Effect of naphthaleneacetic acid on root and plant growth and yield of ten irrigated wheat genotypes. Pak. J. Bot. 51(2): 451–459. https://doi.org/10.30848/PJB2019-2(11).

Khan, Q., Y. Qin, D.J. Guo, L.T. Yang, X.P. Song, Y.X. Xing and Y.R. Li. 2023. A review of the diverse genes and molecules involved in sucrose metabolism and innovative approaches to improve sucrose content in sugarcane. Agronomy. 13(12): 2957. https://doi.org/10.3390/agronomy13122957.

Kumar, A., S.K. Meena, S.K. Sinha and A.K. Singh. 2023. Strategies for enhancing sugarcane yields by harnessing the power of ripening and the use of ripeners in sugarcane cultivation, pp. 185–196. In: Proceedings of the International Conference on Sustainable Sugarcane Production and Utilization. October 13–15, 2023, Coimbatore, India.

Kumar, N., V. Kumar, K. Kishor and A.K. Singh. 2024. Optimizing nutrient application and nitrogen transformation to maximize the growth and productivity of bud chip transplanted sugarcane. J. Plant Nutr. 47(16): 2583–2596. https://doi.org/10.1080/01904167.2024.2354201.

Li, Y.R. 2023. Growth and development of sugarcane (Saccharum spp. hybrid) and its relationship with environmental factors, pp. 1–11. In: K.K. Verma, X.P. Song, V.D. Rajput, S. Solomon, Y.R. Li and G.P. Rao, (Eds.), Agro-industrial Perspectives on Sugarcane Production under Environmental Stress. Springer Nature Singapore, Singapore.

Liang, Y.J., X.Q. Zhang, L. Yang, X.H. Liu, L.T. Yang and Y.R. Li. 2019. Impact of seed coating agents on single-bud seedcane germination and plant growth in commercial sugarcane cultivation. Sugar Tech. 21(3): 383–387. http://dx.doi.org/10.1007/s12355-018-0645-8.

Magarey, R.C. 2020. Sugarcane - an old plantation crop that offers new environmentally friendly possibilities. IOP Conf. Ser.: Earth Environ. Sci. 418(1): 012004. https://doi.org/10.1088/1755-1315/418/1/012004.

Magnoli, K., C.S. Carranza, M.E. Aluffi, C.E. Magnoli and C.L. Barberis. 2020. Herbicides based on 2,4-D: Its behavior in agricultural environments and microbial biodegradation aspects. A review. Environ. Sci. Pollut. Res. 27(31): 38501–38512. https://doi.org/10.1007/s11356-020-10370-6.

Majda, M. and S. Robert. 2018. The role of auxin in cell wall expansion. Int. J. Mol. Sci. 19(4): 951. https://doi.org/10.3390/ijms19040951.

Manzoor, M., M.Z. Khan, S. Ahmad, M.D. Alqahtani, M. Shabaan, S. Sarwar, M.A. Hameed, U. Zulfiqar, S. Hussain, M.F. Ali, M. Ahmad and F.U. Haider. 2023. Optimizing sugarcane growth, yield, and quality in different ecological zones and irrigation sources amidst environmental stressors. Plants. 12(20): 3526. https://doi.org/10.3390/plants12203526.

Mehdi, F., Z. Cao, S. Zhang, Y. Gan, W. Cai, L. Peng, Y. Wu, W. Wang and B. Yang. 2024. Factors affecting the production of sugarcane yield and sucrose accumulation: Suggested potential biological solutions. Front. Plant Sci. 15: 1374228. https://doi.org/10.3389/fpls.2024.1374228.

Mishra, K. 2019. Evaluation of bud chip method for enhancing yield and economics of sugarcane. Int. J. Chem. Stud. 7(3): 1726–1729.

Mohanty, M. and P.K. Nayak. 2021. Bud chip method of sugarcane planting: A review. J. Pharm. Innov. 10(3): 150–153. https://doi.org/10.22271/tpi.2021.v10.i3c.5753.

Musacchi, S. 2023. Optimization of fruit tree propagation techniques and agronomical performances in the nursery. Acta Hortic. 1413: 165–184. https://doi.org/10.17660/ActaHortic.2024.1413.21.

Nayak, H. and S.P. Yadav. 2021. Importance of "bud chip technique" in sugarcane cultivation. Food Sci. Reports. 2(4): 30–32.

PAGASA (Philippine Atmospheric, Geophysical and Astronomical Services Administration). 2024. Climate of the Philippines. Available Source: https://www.pagasa.dost.gov.ph/information/climate-philippines. May 21, 2025.

Pantoja-Guerra, M., N. Valero-Valero and C.A. Ramírez. 2023. Total auxin level in the soil–plant system as a modulating factor for the effectiveness of PGPR inocula: A review. Chem. Biol. Technol. Agric. 10(1): 6. https://doi.org/10.1186/s40538-022-00370-8.

Parajuli, T., D.K. Kurre and S.K. Jangde. 2019. Sustainable sugarcane initiative (SSI)-an approach to enhance sugarcane cultivation and input use efficiency and sustainable yield of sugarcane in India. Internat. J. Agric. Sci. 15(1): 222–226. http://dx.doi.org/10.15740/HAS/IJAS/15.1/222-226.

PSA (Philippine Statistics Authority). 2023. Major Non-Food and Industrial Crops Quarterly Bulletin. Vol. 17, No. 2 (April-June 2023). Quezon City, Philippines.

Sanghera, G.S. and M. Sharma. 2024. Recent interventions in sugarcane farming for enhancing cane yield and farm income with special reference to Punjab, pp. 46. In: Proceedings of the 4th National Conference. Agriculture in 2050: Technology Development and Dissemination. March 1–3, 2024, Madhya Pradesh, India.

Singh, P., P. Singh and J. Singh. 2021. Sugarcane bagasse: A potential and economical source for raising sugarcane nursery in sub-tropical India. Sugar Tech. 23(6): 1211–1217. https://doi.org/10.1007/s12355-021-01028-9.

Singh, P., S.N. Singh, A.K. Tiwari, S.K. Pathak, A.K. Singh, S. Srivastava and N. Mohan. 2019. Integration of sugarcane production technologies for enhanced cane and sugar productivity targeting to increase farmers’ income: Strategies and prospects. 3 Biotech. 9(2): 48. https://doi.org/10.1007/s13205-019-1568-0.

Soomro, A.F. 2024. Evaluation of mechanized sugarcane bud chip plantation in contrast with conventional method. Pak. J. Sci. 76(1): 70–75. https://doi.org/10.57041/vol76iss01pp70-75.

SRA (Sugarcane Regulatory Authority). 2024. Sugarcane varieties: PHIL 2006-1899 (PHIL 92-0051 × PHIL 93-2349). Available Source: https://www.sra.gov.ph/view_file_custom/sugarcane_varieties/AzoellmVBDtYR9f/path_desc. May 21, 2025.

Sreelatha, P., V. Umamahesh, D. Subramanyam and N.V. Sarala. 2019. Effect of different chemical treatments on field performance of sugarcane planting materials. J. Pharmacogn. Phytochem. 8(4): 2030–2036.

Sugeerthi, S., M. Jayachandran and C. Chinnusamy. 2018. Effect of planting materials and integrated nutrient management on yield of sugarcane seed crop. Madras Agric. J. 105(4–6): 141–146. https://doi.org/10.29321/MAJ.2018.000118.

Sugiyanto, S. and M. Kustiawan. 2020. The effect of net return on investment income in Jamkrida Jabar’s company. Advances in Economics, Business and Management Research. 117: 121–124. https://doi.org/10.2991/aebmr.k.200131.026.

Sujatha, P., B.N.V.S. Ravi Kumar, N.V. Naidu, M. Charumathi, P. Beby and K. Jayachandra. 2018. Plant growth promoters effect on cane, quality and yield parameters in sugarcane (Saccharum officinarum L.). Int. J. Chem. Stud. 6(3): 737–743.

Tolera, B. 2016. Effects of naphthalene acetic acid (NAA) and indole -3- butyric acid (IBA) on in vitro rooting of sugarcane (Saccharum officinarum L.) micro- shoots. J. Biotechnol. Biomater. 6: 215. https://doi.org/10.4172/2155-952X.1000215.

Wani, A.W., I. Yaseen, S. Fayaz, A. Khursheed, A. Gupta, G.I. Hassan, R. Rajan, S. Qayoom, I. Gani and S. Jayarajan. 2022. Advances in propagation and nursery management: Methods and techniques, pp. 45–57. In: R. Mushtaq, G.A. Nayik and A.R. Malik, (Eds.), Apples: Preharvest and Postharvest Technology. 1st Edition. CRC Press, Boca Raton, Florida, USA.

Wu, L. and R.G. Birch. 2007. Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol. J. 5(1): 109–117. https://doi.org/10.1111/j.1467-7652.2006.00224.x.

Xie, Y., H. Duan, L. Wang, J. Zhang, K. Dong, X. Wang, Y. Zhang, Y. Zhou, W. Li, Y. Qi, W. Zhao, Z. Dang, X. Wang, W. Li and L. Zhao. 2023. Phosphorus and naphthalene acetic acid increased the seed yield by regulating carbon and nitrogen assimilation of flax. Front. Plant Sci. 14: 1228755. https://doi.org/10.3389/fpls.2023.1228755.