Production and Physical characteristics of Biochar from Agricultural Waste Materials in Suratthani Province

Main Article Content

Naranun Khammanee
Ainthira Arwut
Kiattiyout Thupsawat

Abstract

Biochar is a carbon-rich material produced through pyrolysis, a thermal decomposition process of agricultural residues under limited or no oxygen conditions. This process alters the physical structure of the material, resulting in a porous structure with a high fixed carbon content. The objective of this study was to produce and evaluate the physical properties of biochar derived from various biomass feedstocks, including hemp stalks, cocoa shells, corncobs, durian peels, mangosteen peels, and pineapple peels. Although pyrolysis was carried out at temperatures ranging between 215 to 300 °C without temperature control, the produced biochar demonstrated desirable porosity characteristics. Among the tested samples, durian biochar exhibited the highest quality in terms of physical properties, showing a calorific value, fixed carbon, moisture content, ash content, and volatile matter of 7,107.63 Cal/g, 73.17%, 2.84%, 23.18%, and 1.38%, respectively. The second-best performance was observed in corncob biochar, with corresponding values of 6,011.18 ± 16.91 Cal/g, 76.95%, 2.64%, 19.07%, and 1.51%, respectively. Pore structure analysis revealed that corncob biochar had the highest pore volume and specific surface area, measured at 0.1028 cm³/g and 147.00 m²/g, respectively. The morphology of the biochar, observed using a Scanning Electron Microscope (SEM) at 200× and 500× magnification, demonstrated a capillary tube-like porous structure. Corncob biochar exhibited the most distinct porosity, followed by hemp, durian, cocoa, mangosteen, and pineapple biochar, respectively.

Article Details

How to Cite
Khammanee, N., Arwut, A., & Thupsawat, K. (2025). Production and Physical characteristics of Biochar from Agricultural Waste Materials in Suratthani Province. Naresuan Agriculture Journal, 22(2), e0220205. retrieved from https://li01.tci-thaijo.org/index.php/aginujournal/article/view/268746
Section
Research Articles

References

กรมพัฒนาที่ดิน. (2567). แผนการใช้ที่ดินตำบลพิเทน อำเภอทุ่งยางแดง จังหวัดปัตตานี (รายงาน). สถานีพัฒนาที่ดินปัตตานี, สำนักงานพัฒนาที่ดินเขต 12, กรมพัฒนาที่ดิน, กระทรวงเกษตรและสหกรณ์.

กฤษฎา บุญชม, จุฑามาศ เตียวสกุล และกมลวรรณ ทิพวรรณ. (2563). สมบัติทางกายภาพและอัตราการดูดซับความชื้นของถ่านผลไม้. วารสารวิจัยและพัฒนา วไลยอลงกรณ์ ในพระบรมราชูปถัมภ์, 15(2), 77–89.

วนิดา จิตติวสุรัตน์ และสุธิรา รัตนถาวร. (2562). กระบวนการผลิตถ่านชีวมวลจากวัสดุเหลือใช้ทางการเกษตร: กรณีศึกษาชาวสวนยางพาราในจังหวัดสงขลา. วารสารวิชาการและวิจัย มหาวิทยาลัยแม่โจ้, 13(2), 71–86.

นรานันท์ ขำมณี. (2564). คู่มือการผลิตและเพิ่มมูลค่าของถ่านชีวภาพ [E-book]. FlipHTML5. https://fliphtml5.com/dzitx/phta/basic

Afrah, A., Prapaiwong, P., Mahaprom, W., Manoh, M., & Muneer, S. (2025). The preliminary study of two-stage pyrolysis durian shell to biochar. International Journal of Environmental Science, 6(8), 523–532.

Al-Widyan, M. I., Al-Jalil, H. F., Abu-Zreig, M. M., & Abu-Hamdeh, N. H. (2002). Physical properties of selected biomass solids. Canadian Biosystems Engineering, 44(3), 39–46.

Altıkat, A., Alma, M. H., Altıkat, A., Bilgili, M. E., & Altıkat, S. (2024). A comprehensive study of biochar yield and quality concerning pyrolysis conditions: A multifaceted approach. Sustainability, 16(2), 937.

Barta, Z., Sipos, L., & Takács, A. (2022). Bioenergy potential of hemp (Cannabis sativa L.): A review on biomass properties and thermochemical conversion techniques. Biomass and Bioenergy, 160, 106398.

Ceretta, M. B., Antic Gorrazzi, S., D’Ippolito, S., Mendieta, J., Nercessian, D., & Bonanni, S. (2025). Cannabis sativa biochar: Characterization and preliminary application in plant growth and adsorption, and as an electrode material. RSC Sustainability, 3, 1932–1940.

Daosukho, C., & Rodprasert, W. (2015). The development of soil quality using biochar amendment from agricultural waste. Burapha Science Journal, 20(3), 78–89.

Ghosh, P., Basak, B., & Saha, S. (2020). A comprehensive review on the valorization of Cannabis sativa L. hemp-based industrial by-products for bioenergy and biochar production. Renewable and Sustainable Energy Reviews, 130, 109944.

Guo, Y., & Rockstraw, D. A. (2009). Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Bioresource Technology, 100(21), 4867–4873.

Hashim, R., Nadhari, W. N. A. W., Sulaiman, O., Kawamura, F., Hiziroglu, S., Sato, M., & Sahari, N. (2020). Characterization of raw materials and manufactured binderless particleboard from a mixture of rubberwood and mangosteen peel. Industrial Crops and Products, 150, 112394.

Kamali, M., et al. (2022). Biochar for soil applications – sustainability aspects, challenges and future prospects. Chemical Engineering Journal, 428, 131086.

Khawkomol, T., Supaphol, P., & Limtrakul, J. (2021). Potential of biochar derived from agricultural residues for sustainable management. KMUTT Research and Development Journal, 44(4), 541–550.

Lim, W. S., Lee, C. H., & Mah, S. K. (2021). Valorization of cocoa pod husk for production of biochar: Characterization and application. Biomass Conversion and Biorefinery, 11(4), 1453–1463.

Mbah, G. O., Obiechina, N. S., & Achi, C. G. (2023). Preparation and characterization of activated carbon from corn cob for wastewater treatment applications. Environmental Technology & Innovation, 30, 102986.

Mohamad, N., Ab. Rahman, N. A., Abdullah, N., & Bakar, R. A. (2019). Combustion characteristics of oil palm biomass waste and co-firing with coal: A review. Environmental Technology & Innovation, 14, 100346.

Nations University. (2002). Agricultural waste in Thailand: Potential for resource recovery [Unpublished report]. FAO. https://www.fao.org/…

Phonphuak, N., & Chindaprasirt, P. (2015). Characterization and utilization of biomass fly ash from electric power plants. Waste Management, 38, 157–162.

Qian, S., Zhou, X., Fu, Y., Song, B., Yan, H., Chen, Z., Sun, Q., Ye, H., Qin, L., & Lai, C. (2023). Biochar-compost as a new option for soil improvement: Application in various problem soils. Science of the Total Environment, 870, 162871.

Rattanasak, U., Jantarat, N., & Wongcharee, S. (2021). Utilization of mangosteen peel for biochar production and its adsorption capacity for dye removal. Journal of Cleaner Production, 279, 123456.

Sharma, S., Rana, V. S., Rana, N., Prasad, H., Sharma, U., & Patiyal, V. (2022). Biochar from fruit crops waste and its potential impact on fruit crops. Scientia Horticulturae, 299, 111058.

Takolpuckdee, P. (2014). Transformation of agricultural market waste disposal to biochar soil amendments (Research Report). Nakhon Sawan Rajabhat University.

Tarasawatpipat, T., Promraksa, A., Pimsamarn, M., & Srichandr, P. (2014). Biochar production from agricultural waste in Amphawa district, Samutsongkram province Thailand. Advanced Materials Research, 1051, 388–391.

Wang, Y., Zhang, J., & Chen, M. (2022). Biochar from hemp fibers: Characterization and adsorption capacity for heavy metals. Bioresource Technology Reports, 17, 100926.

Žiūra, K., Zvicevičius, E., Černiauskienė, Ž., Tilvikienė, V., Bakšinskaitė, A., & Pilipavičius, J. (2023). Effect of thermochemical treatment on the physicochemical properties of fiber hemp (Cannabis sativa L.) by-product. Journal of Cleaner Production, 384, 135589.

Sawangphol, N., Sirisomboonchai, S., Laowameea, J., & Suttibut, C. (2021). The availability and assessment of potential agricultural residues for the regional development of second-generation bioethanol in Thailand. Energy Reports, 7, 1414–1422.

Lim, W. S., Lee, C. H., & Mah, S. K. (2021). Valorization of cocoa pod husk for production of biochar: Characterization and application. Biomass Conversion and Biorefinery, 11(4), 1453–1463.

Altıkat, A., Bilgili, M. E., & Altıkat, S. (2024). A comprehensive study of biochar yield and quality concerning pyrolysis conditions: A multifaceted approach. Sustainability, 16(2), 937.