Assessment viability and storage method for tomato pollen for seed production
Keywords:
Tomato, Pollen storage, Hybrid seedAbstract
Tomato is an important economic vegetable crop. In the breeding process to develop new varieties and in the production of hybrid tomato seeds, high-quality pollen must be used. It is essential for the pollen to undergo an initial quality assessment prior to pollination. This study investigated a suitable dye for rapid assessment of tomato pollen viability, evaluated pollen germination by determining the optimal sucrose concentration to induce germination, and examined appropriate storage temperatures to extend pollen longevity. The experiment was conducted using a Completely Randomized Design (CRD) with four treatments and five replications. The results showed that 1% Acetocarmine was the most effective dye for distinguishing between viable and non-viable tomato pollen, with clear staining achieved in just 10 minutes. The optimal sucrose solution for inducing pollen germination was found to be 20%, resulting in the highest germination rate of 67.50%. Pollen stored at –20°C remained viable for up to 30 days, retaining 100% viability and a germination rate of 22.5%. When this stored pollen was used for pollination, the resulting fruit set was 42.27%, with an average fresh fruit weight of 26.50 grams per fruit and an average seed weight of 0.09 g/fruit. The seeds had a high germination rate of 99%. Therefore, the developed pollen preservation method can be effectively applied to tomato breeding programs and hybrid seed production in the future.
References
Abdul-Baki, A. (1992). Determination of pollen viability in tomatoes. Journal of the American Society for Horticultural Science, 117(3), 473-476. https://doi.org/10.21273/JASHS.117.3.473
Brewbaker, J. L., & Kwack, B. H. (1963). The essential role of calcium ion in pollen germination and pollen tube growth. American Journal of Botany, 50(9), 859-865. https://doi.org/10.2307/2439772
Beyhan, N., & Serdar, U. (2008). Assessment of pollen viability and germinability in some European chestnut genotypes (Castanea sativa L.). Horticultural Science, 35(4), 171-178. https://doi.org/10.17221/23/2008-hortsci
Buitink, J., & Leprince, O. (2004). Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology, 48(3), 215-228. https://doi.org/10.1016/j.cryobiol.2004.02.011
Bureau of plant and agricultural materials control. (2023). Seed export form Thailand in 2023. https://www.doa.go.th/ard/wp-content/uploads/2024/06/export-2566.pdf (In Thai)
Dafni, A., & Firmage, D. (2000). Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Systematics and Evolution, 222, 113-132. https://doi.org/10.1007/BF00984098
FAOSTAT. (2023, August 11). Food and agriculture organization of the united nations. http://www.fao.org/faostat/en/#data/QC.
Hanna, W. W., & Towill, L. E. (1995). Long-term pollen storage. Plant Breeding Reviews, 13, 179-207. https://doi.org/10.1002/9780470650059.ch5
Impe, D., Reitz, J., Köpnick, C., Rolletschek, H., Börner, A., Senula, A., & Nagel, M. (2020). Assessment of pollen viability for wheat. Frontiers in Plant Science, 10, 1588. https://doi.org/10.3389/fpls.2019.01588
ISTA (International Seed Testing Association). (2023). International rules for seed testing. Bassersdorf, Switzerland. 300p.
Karapanos, I. C., Fasseas, K., Olympios, C., & Passam, H. C. (2006). Factors affecting the efficacy of agar-based substrates for the study of tomato pollen germination. The Journal of Horticultural Science and Biotechnology, 81(4), 631-638. https://doi.org/10.1080/14620316.2006.11512116
Office of Agricultural Economics. (2023). Tomato: area production and yield In Thailand 2023. http://www.oae.go.th/assets/portals/1/fileups/prcaidata/files/ (In Thai)
Luna, S. V., Fugueroa, J. M., Baltazar, B. M., Gomez, R. L., Townsend, R., & Schoper J. B. (2001). Maize pollen longevity and distance isolation for effective pollen control. Crop Science, 41(5), 1551-1557. https://doi.org/10.2135/cropsci2001.4151551x
Song J., & Shoji, T. (2007). Loss of viability of tomato pollen during long-term dry storage is associated with reduced capacity for translating polyamine biosynthetic enzyme genes after rehydration. Journal of Experimental Botany, 58(15-16), 4235-4244. https://doi.org/10.1093/jxb/erm280.
Taylor L. P., & Hepler, P. K. (1997). Pollen germination and tube growth. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 461-491. https://doi.org/10.1146/annurev.arplant.48.1.461
van Bilsen, D. G. J. L., & Hoekstra, F. A. (1993). Decreased membrane integrity in aging Typha latifolia L. pollen (accumulation of lysolipids and free fatty acids). Plant Physiology, 101(2), 675-682. https://doi.org/10.1104/pp.101.2.675.
Vasil, I. K. (1987). Physiology and culture of pollen. International Review of Cytology, 107, 127-174. https://doi.org/10.1016/S0074-7696(08)61075-X
Wolkers, W. F., & Hoekstra, F. A. (1995). Aging of dry desiccation tolerant pollen does not affect protein secondary structure. Plant Physiology, 109, 907-915. https://doi.org/10.1104/pp.109.3.907
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agriculture & Technology RMUTI Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารทดสอบระบบ ThaiJo2 ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใดๆ
บทความ ข้อมูล เนื่อหา รูปภาพ ฯลฯ ที่ได้รับการดีพิมพ์ในวารสารทดสอบระบบ ThaiJo2 ถือเป็นลิขสิทธิ์ของวารสารทดสอบระบบ ThaiJo2 หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่หรือเพื่อกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักอักษรณ์จากวารสารทดสอบระบบ ThaiJo2 ก่อนเท่านั้น
