Application of coating urea fertilizer by natural rubber with rice flour on the Ipomoea aquatica growth
Keywords:
Nitrogen, Urea fertilizer, Chinese water spinach, Slow release fertilizer, Grafted copolymerAbstract
Urea fertilizer is widely used for cropping due to its high nitrogen content. However, it is easy to lost to environment through water leaching and sublimation processes. Therefore, this study explored slow-release urea fertilizer by coating with natural rubber (NR) grafted copolymer with rice flour (RF) in various proportions. The proportions of natural rubber (NR) and rice flour (RF) were [100:0], [90:10], [70:30] and [50:50]. Release profile of the coated urea was tested on Chinese water spinach (Ipomoea aquatica) cropping. Complete random design (CBD) was adopted for the experiment with 5 replicates of 1.2 x 2 m2 plot per treatment. Seven treatments were investigated for fertilizer application: Treatment 1: Control (No urea application), Treatment 2: Urea 30 (applying 30 g/plot after 7 days of planting), Treatment 3: Urea 15+15 (applying urea 2 times, 15 g each after 7 and 17 days of planting) and Treatment 4 to Treatment 7, the plots were applied with [100:0], [90:10], [70:30], and [50:50] coated urea, 30 g each after 7 days of planting, respectively. Efficacy of the coating and the resistance to urea release showed that the [50:50] coated urea was well-formed, with no stickiness, surface holes, or gaps, resulting in the slowest release during water soaking. There was no difference in growth indicators for plant which was applied with either Urea 15+15 or coated urea fertilizer. However, the finding in plant applied with the coated [50:50] urea suggested that coated urea could provide the best yields (highest height and above-ground fresh weight) and be able to decrease N loss in soil.
References
Chen, L., Xie, Z., Zhuang, X., Chen, X., & Jing, X. (2008). Controlled release of urea encapsulated by starch-g-poly(L-lactide). Carbohydrate Polymers, 72(2), 342-348. https://doi.org/10.1016/j.carbpol.2007.09.003
Cho, C. G., & Lee, K. (2002). Preparation of starch-g-polystyrene copolymer by emulsion polymerization. Carbohydrate Polymers, 48(2), 125-130. https://doi.org/10.1016/S0144-8617(01)00222-3
Hakeem, K. R., Ahmad, A., Iqbal, M., Gucel, S., & Ozturk, M. (2011). Nitrogen-efficient rice cultivars can reduce nitrate pollution. Environmental Science and Pollution Research, 18(7), 1184-1193. https://doi.org/10.1007/s11356-010-0434-8
Hummel, N. W. J. (1989). Resin-coated urea evaluation for turfgrass fertilization. Agronomy Journal, 81(2), 290-294. https://doi.org/10.2134/agronj1989.00021962008100020030x
Kongparakul, S. (2013). Technology of natural rubber modification and its applications. Khon Kaen University Journal of Science, 41(3), 567-581. (In Thai)
Kuhathamrakun, N., & Saengsuwan, S. (2017). Controlled-release urea fertilizer for agricultural applications. Ubon Ratchathani University Journal of Science and Technology, 19(3), 32-44. (In Thai)
La-or, P., & Asavapisit, S. (2008). Controlled release of urea from polyethylene/starch-coated urea fertilizer. Khon Kaen Agriculture Journal, 36(Special issue), 11–18. (In Thai)
Nakason, C., Wohmang, T., Kaesaman, A., & Kiatkamjornwong, S. (2010). Preparation of cassava starch-graft-polyacrylamide superabsorbents and associated composites by reactive blending. Carbohydrate Polymers, 81(2), 348–357. https://doi.org/10.1016/j.carbpol.2010.02.030
Pringphro, C., & Kulnit, B. (2018). Effect of coated fertilizer on growth and yield of cereals. Prawarun Agricultural Journal, 15(1), 1–16. (In Thai)
Riyajan, S., Sasithornsonti, Y., & Phinyocheep, P. (2012). Green natural rubber-g-modified starch for controlling urea release. Carbohydrate Polymers, 89(1), 251–258. https://doi.org/10.1016/j.carbpol.2012.03.004
Tanpaiboon, N. (2017). Chemical fertilizer industry. Krungsri Research, Business/Industry Outlook 2018–2020. (In Thai)
Tokiwa, Y., Calabia, B. P., Ugwu, C. U., & Aiba, S. (2009). Biodegradability of plastics. International Journal of Molecular Sciences, 10(9), 3722–3742. https://doi.org/10.3390/ijms10093722
Tudorachi, N., Cascaval, C. N., Rusu, M., & Pruteanu, M. (2000). Testing of polyvinyl alcohol and starch mixtures as biodegradable polymeric materials. Polymer Testing, 19(7), 785–799. https://doi.org/10.1016/S0142-9418(99)00049-5
Wiriyasunthorn, S., & Sriplang, S. (2015). Preparation of cassava starch/polyvinyl alcohol/montmorillonite nanocomposite for controlled-release fertilizer coating. Khon Kaen University Journal of Science, 43(3), 503–514. (In Thai)
Zhong, K., Lin, Z. T., Zheng, X. L., Jiang, G. B., Fang, Y. S., Mao, X. Y., & Liao, Z. W. (2013). Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydrate Polymers, 92, 1367-1376. https://doi.org/10.1016/j.carbpol.2012.10.030
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agriculture & Technology RMUTI Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารทดสอบระบบ ThaiJo2 ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใดๆ
บทความ ข้อมูล เนื่อหา รูปภาพ ฯลฯ ที่ได้รับการดีพิมพ์ในวารสารทดสอบระบบ ThaiJo2 ถือเป็นลิขสิทธิ์ของวารสารทดสอบระบบ ThaiJo2 หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่หรือเพื่อกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักอักษรณ์จากวารสารทดสอบระบบ ThaiJo2 ก่อนเท่านั้น
