Factors Affecting on Soil Organic Matter and Organic Carbon Fractions under Agricultural Soils of Upper Northern Thailand

Main Article Content

Suphathida Aumtong
Chakrit Chotamonsak
Bandit Somchit

Abstract

     This study proposed the effect of agricultural land uses on soil organic matter (SOM), soil organic carbon (SOC), and labile soil carbon fractions (LSCF), and the relationship between organic carbon fractions and SOM and SOC agricultural soil in the upper northern region. Soil samples were collected from the difference of crop-land use types (i.e. paddy soil, maize, and longan plantation) from the upper north of Thailand (i.e. Lampang, Phrae, Nan, Payao, Lampoon, Chiang Rai, Mae Hong Son, and Chiang Mai) were sampled by the grid method (1 grid = 10×10 km2) at a depth of 0-30 cm, and then the SOM, SOC, and LSCF were analyzed by reference methods from soil samples. The soil data were analyzed by Two ways and One way ANOVA, and the relationships between LSCF to SOM and SOC were calculated by the Principal Component Analysis method. The results showed that the higher means of SOM and SCF (e.g. WSC, C-FPSF, and C-LPSF) contents in maize soil than rice soil. Meanwhile, the longan soil had the highest proportion of SFC/SOC (% of SOC) (P<0.05) (about 13.398-17.814%), which was higher than that of rice and maize soil samples. As for the location effects, Phrae province had the highest content of SOM, while Chiang Rai province had the highest content of SOC. The LSCF were related to the SOC and SOM, which differ according to the crop-land uses. In this study, the amount of SOM, SOC, LSCF, and LSCF/SOC in rice soil (i.e. paddy soil) was lower than longan soil. As a result of soil management such as tillage and synthesis fertilizers could affect the LSCF a higher than longan plantation. The rice soil was plowed and contributed to a high decomposition rate. Meanwhile, possibly a high SOM formation rate in maize soil, there was high LSCF content and corresponding high SOM content. There was the highest percentage of LSCF/SOC which was consistent with high SOM content. Because the plant residues were continuing input in the longan plot area, there were minimum soil disturbances also. There was a combination of organic and chemical fertilization, that enhanced the Negative Priming. These could be the reasons that the amount of SOM and SOC in the longan soil was higher than in the paddy soil. Additionally, these soil data were the spatial study. They came from many pieces of information (i.e. soil type, quantity and type of clay mineral, geography, soil property, climate, and geomorphology of various provinces). These affect the formation and decomposition of SOM, SOC, and LSCF within crop-land types and in the condition of various provinces. The SOM, SOC, and LSCF could be assessing soil health indicators. Moreover, they were the capability of the modulators of Carbon cycling, which could be contributing to the carbon sequestration in the agricultural soils. That could be for soil health improvement and the mitigation of climate change.

Article Details

How to Cite
Aumtong, S. ., Chotamonsak, C. ., & Somchit, B. . (2023). Factors Affecting on Soil Organic Matter and Organic Carbon Fractions under Agricultural Soils of Upper Northern Thailand. Maejo Journal of Agricultural Production, 5(1), 62–79. retrieved from https://li01.tci-thaijo.org/index.php/japmju/article/view/258704
Section
Research Article

References

ศุภธิดา อํ่าทอง และปวีณ์นุช ปวงวงค์คำ. 2561. ปริมาณคาร์บอนอินทรีย์ส่วนต่าง ๆ และการเก็บสะสมภายใต้ดินปลูกข้าว. วารสารวิจัยและส่งเสริมวิชาการเกษตร 34(2):1-13.

ศุภธิดา อํ่าทอง ทวี ชัยพิมลผลิน และชาคริต โชติอมรศักดิ์. 2562. ความสัมพันธ์ของคาร์บอนอินทรีย์โดยเพอร์แมงกาเนตออสซิไดร์เซเบิลกับอินทรียวัตถุเพื่อเป็นดัชนีคุณภาพของดินไร่และดินปลูกข้าว. วารสารวิจัยและส่งเสริมวิชาการเกษตร 36(1): 1-10.

ศุภธิดา อํ่าทอง ทวี ชัยพิมลผลิน และชาคริต โชติอมรศักดิ์. 2562. ศักยภาพการปล่อยก๊าซคาร์บอนไดออกไซด์และมีเทนจากดินทำการเกษตรของภาคเหนือตอนบนของประเทศไทย. E–Proceeding ในการประชุมวิชาการดินและปุ๋ยแห่งชาติครั้งที่ 6 มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน นครปฐม. น. 392-403.

สำนักงานเศรษฐกิจการเกษตร. 2559. พื้นที่ปลูกข้าว ข้าวโพด และลำไยของประเทศไทย. แหล่งข้อมูล https://www.oae.go.th/view/1/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%83%E0%B8%8A%E0%B9%89%E0%B8%97%E0%B8%B5%E0%B9%88%E0%B8%94%E0%B8%B4%E0%B8%99/TH-TH (25 สิงหาคม 2564).

สำนักงานส่งเสริมและพัฒนาการเกษตร. 2529. ข้อมูลพื้นฐานของภาคเหนือตอนบน. แหล่งข้อมูล http://www.ndoae.doae.go.th/zoning/data/2017/files/pdf4.pdf (25 สิงหาคม 2564).

Angst, G., K.E. Mueller, K.G.J. Nierop and M.J. Simpson. 2021. Plant-or microbialderived? A review on The molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry (156): 108-189.

Aumtong, S., J. Magid, S. Bruun and A. Neergaard. 2009. Relating soil carbon fractions to land use in sloping uplands in northern Thailand. Agriculture, Ecosystems and Environment ( 131): 229-239.

Aumtong, S., A. Neergaard and J. Magid. 2011. Formation and remobilization of soil microbial residue. Effect of clay content and repeated additions of cellulose and sucrose. Biology and Fertility of Soils (47): 863-874.

Bekele, A., L. Kellman and H. Beltrami. 2013. Plot level spatial variability of soil organic carbon, nitrogen, and their stable isotopic compositions in temperate managed forest soils of Atlantic Canada. Soil Science Journal (178): 400-416.

Bertrand, I., B. Chabbert, B. Kurek and S. Recous. 2006. Can the Biochemical Features and Histology of Wheat Residues Explain their Decomposition in Soil?. Plant and Soil. (281): 291-307.

Blagodatsky, S., E. Blagodatskaya, T. Yuyukina and Y. Kuzyakov. 2010. Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition. Soil Biology and Biochemistry 42(8): 1275-1283.

Chambers, L.E., P. Barnard, E.S. Fzanska, A.J. Hobday, M.R. Keatley, N. Allsopp and L.G. Underhill. 2016. Southern Hemisphere biodiversity and global change: Data gaps and strategies. Austral Ecology 42(1): 20-30.

Chen, H., R. Hou, Y. Gong, H. Li, M. Fan, and Y. Kuzyakov. 2009. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil and Tillage Research (106): 85-94.

Delgado-Baquerizo, M., S.B. Karunaratne, P. Trivedi and B.K. Singh. 2018. Climate, geography, and soil abiotic properties as modulators of soil carbon storage. Soil Carbon Storage. Modulators, Mechanisms and Modeling 137-165.

Gessesse, T.A., A. Khamzina, G. Gebresamuel and W. Amelung. 2020. Terrestrial carbon stocks following 15 years of integrated watershed management intervention in semi-arid Ethiopia. CATENA. (190): 104543.

Ghani, A., M.M. Dexter and K. Perrott. 2003. Hot-Water Extractable Carbon in Soil: A Sensitive Measurement for Determining Impacts of Fertilization, Grazing and Cultivation. Soil Biology and Biochemistry 35(9): 1231-1243.

Gmach, M.R, M.R. Cherubin, K. Kaiser and C.E.P. Cerri. 2020. Processes that influence dissolved organic matter in the soil: a review. Scientia Agricola 77(3).

Kalbitz, K., J. Schmerwitz, D. Schwesig and E. Matzner. 2003. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma (113): 273-291.

Kara, O. and I. Bolat. 2008. The effect of different land uses on soil microbial biomass carbon and nitrogen in Bartin Province. Turkish Journal of Agriculture and Forestry (32): 281-288.

Kogel-Knabner, I. and W. Amelung. 2021. Soil organic matter in major pedogenic soil groups. Geoderma (384): 114785.

Kooch, Y., M.A. Mehr and S.M. Hosseini. 2020. The effect of forest degradation intensity on soil function indicators in northern Iran. Ecology Indicator (114): 106324.

Kuzyakov, Y. and G. Domanski. 2000. Carbon Input by Plants into the Soil. Review. Journal of Plant Nutrition and Soil Science (163): 421-431.

Lehmann, J. and M. Kleber. 2015. The contentious nature of soil organic matter. Nature 528(7580): 60-68.

Liu, Y., H. Zang, T. Ge, J. Bai, S. Lu, P. Zhou, P. Peng, O. Shibistova, Z. Zhu, J. Wu and G. Guggenberger, 2018. Intensive fertilization (N, P, K, Ca, and S) decreases organic matter decomposition in paddy soil. Applied Soil Ecology (127): 51-57.

McLauchlan, K.K. and S.E. Hobbie. 2004. Comparison of Labile Soil Organic Matter Fractionation Techniques. Soil Science Society of America Journal (68): 1616-1625.

Nelson, D.W. and L.E. Sommer. (1982) Total Carbon, Organic Carbon and Organic Matter. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd Edition. ASA-SSSA, Madison, 595-579.

Qin, Z., X. Yang, Z. Song, B. Peng, L.V. Zwieten, C. Yu, S. Wu, M. Mohammad and H. Wang. 2021. Vertical distributions of organic carbon fractions under paddy and forest soils derived from black shales: Implications for potential of long-term carbon storage. Catena (198): 105056.

Rahmati, M., I. Eskandari, M. Kouselou, V. Feiziasl, G.R. Mahdavinia, N. Aliasgharzad and B. McKenzie. 2020. Changes in soil organic carbon fractions and residence time five years after implementing conventional and conservation tillage practices. Soil & Tillage Research (200): 104632.

Rovira, P., J. Romanya` and B. Duguy. 2012. Long-term effects of wildfires on the biochemical quality of soil organic matter: a study on Mediterranean shrublands. Geoderma (179-180): 9-19.

Singh, M., B. Sarkar, S. Sarkar, J. Churchman, N.S. Bolan, S. Mandal, M. Menon, T.J. Purakayastha and D.J. Beerling. 2018. Stabilization of soil organic carbon as influenced by clay mineralogy. Advanced Agronomy (148): 33-84.

Spohn, M., K. Diakov, F. Aburto, S. Doetterl and J. Borovec. 2022. Sorption and desorption of organic matter in soils as affected by phosphate. Geoderma (405): 115377.

Shahbaz, M., A. Nasir and D. Roubaud. 2018. Environmental Degradation in France: The Effects of FDI, Financial Development, and Energy Innovations. Energy Economics 74: 843-857.

Shahbaz, M., H. Shahzad, S. Alam, and N. Apergis. 2018. Globalization, Economic Growth, and Energy Consumption in the BRICS Region: The Importance of Asymmetries. Journal of International Trade & Economic Development 27(8): 985-1009.

Vos, C., A. Don, E.U. Hobley, R. Prietz, A. Heidkamp and A. Freibauer. 2019. Factors controlling the variation in organic carbon stocks in agricultural soils of Germany. European Journal of Soil Science (70): 550-564.

Walkley, A. and I.A. Black. 1934. Estimation of soil organic carbon by the chromic acid titration method. Soil Science 37(1): 29-38.

Weil, R.R., M.A. Islem, J.J. Stien, J.B. Gruver and S.E. Samson-Liebig. 2003. Estimate active carbon for soil quality assessment: a simplified method for laboratory and field use. American Journal of Alternative Agriculture 18(1): 1-17.